Вероятностные модели шифров.

Введем теперь вероятностную модель шифра. Определим априорные распределения вероятностей P(X), P(K) на множествах X и K соответственно. Тем самым для любого x Î X определена вероятность pX(xP(X) и для любого k Î K – вероятность pK(k) Î P(K), причем выполняются равенства

и .

В тех случаях, когда требуется знание распределений P(X) и P(K), мы будем пользоваться вероятностной моделью SВ, состоящей из пяти множеств, связанных условиями 1) и 2) предыдущего определения алгебраической модели шифра, и двух вероятностных распределений:

SВ=(X, K, Y, E, D, P(X), P(K)).

Распределение P(Y) индуцируется распределениями P(X) и P(K) согласно формуле полной вероятности:

В большинстве случаев множества X и Y представляют собой объединения декартовых степеней A и B соответственно, так что для некоторых натуральных L и L1

Множества A и B называют соответственно алфавитом открытого текста и алфавитом шифрованного текста. Другими словами, открытые и шифрованные тексты записываются привычным образом в виде последовательности букв.

Принята также формулировка вероятностной модели шифра в которой вместо включения в совокупность распределений случайных величин множества X, K Y, рассматриваются как случайные величины , полагая при этом случайные величины независимыми.

Определение: вероятностной моделью шифра назовем совокупность

,

введенных случайных величин, множество правил зашифрования и расшифрования. При этом выполняются требования, предъявляемые к алгебраической модели шифра. Для вероятностной модели шифра используется также обозначение .

Пусть - вероятностная модель опорного шифра. Введя априорные распределения вероятностей P(Ul) и P(Kl) на декартовых степенях множеств U и K, рассмотрим вероятностную модель l-го опорного шифра, рассматривая вместо Ul – множества всех l-грамм, множество U(l), состоящее из тех l-грамм, для которых выполняется условие , то есть всех незапрещенных l-грамм. Также вместо Vl будем рассматривать V(l), полагая, что выполняется равенство .

Введем вероятностную модель шифра с неограниченным ключом.

Определение: Пусть для l Î N

- совокупность, состоящая из случайных величин , множеств правил зашифрования и расшифрования , для которой выполняются условия

при любых . Тогда вероятностной моделью шифра с неограниченным ключом назовем семейство

,

где y - случайный генератор ключевого потока.

Аналогично вводится вероятностная модель шифра с ограниченным ключом, только вместо множества Kl всех ключевых потоков длины l, рассмотрим множество K(l) возможных ключевых потоков длины l.

Определение: Пусть для l Î N

- совокупность, состоящая из случайных величин , множеств правил зашифрования и расшифрования , где распределение P(K(l)) определяется формулой и при любых

. Тогда вероятностной моделью шифра с ограниченным ключом назовем семейство

,

где y - детерминированный генератор ключевого потока.








Дата добавления: 2016-02-13; просмотров: 1750;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.