Кинематика и динамика двигателя

Кинематика и динамика кривошипно-шатунного механизма. Кривошипно-шатунный механизм является основным механизмом поршневого двигателя, который воспринимает и передает значительные по величине нагрузки. Поэтому расчет прочности КШМ имеет важное значение. В свою очередь расчеты многих деталей двигателя зависят от кинематики и динамики КШМ. Кинематический анализ КШМ устанавливает законы движения его звеньев, в первую очередь поршня и шатуна. Для упрощения исследования КШМ считаем, что кривошипы коленчатого вала вращаются равномерно, т.е. с постоянной угловой скоростью.

Различают несколько типов и разновидностей кривошипно-шатунных механизмов (Рис.2.35). Наибольший интерес с точки зрения кинематики представляет центральный (аксиальный), смещенный (дезаксиальный) и с прицепным шатуном.

Центральным кривошипно-шатунным механизмом (рис.2.35.а) называется механизм, у которого ось цилиндра пересекается с осью коленчатого вала двигателя.

Определяющими геометрическими размерами механизма являются радиус кривошипа и длина шатуна . Их отношение представляет собой постоянную величину для всех геометрически подобных центральных кривошипно-шатунных механизмов, для современных автомобильных двигателей .

При кинематическом исследовании кривошипно-ша-тунного механизма обычно вводят в рассмотрение ход поршня , угол поворота кривошипа , угол отклонения оси шатуна в плоскости его качания от оси цилиндра (отклонение в направлении вращения вала считается положительным, а в противоположном — отрицательным), угловая скорость . Ход поршня и длина шатуна являются основными конструктивными параметрами центрального кривошипно-шатунного механизма.

Кинематика центрального КШМ. Задача кинематического расчета заключается в нахождении аналитических зависимостей перемещения, скорости и ускорения поршня от угла поворота коленчатого вала. По данным кинематического расчета выполняют динамический расчет и определяют силы и моменты, действующие на детали двигателя.

При кинематическом исследовании кривошипно-шатунного механизма предполагают, что , тогда угол поворота вала пропорционален времени, поэтому все кинематические величины могут быть выражены в функции угла поворота кривошипа. За исходное положение механизма принимают положение поршня в ВМТ. Перемещение поршня в зависимости от угла поворота кривошипа двигателя с центральным КШМ рассчитывается по формуле. (1)

Лекция 7.Перемещение поршня для каждого из углов поворота может быть определено графическим путем, которое получило название метод Брикса. Для этого из центра окружности радиусом откладывается в сторону НМТ поправка Брикса. находится новый центр . Из центра через определенные значения (напри мер, через каждые 30°) проводят радиус-вектор до пересечения c окружностью. Проекции точек пересечения на ось цилиндра (линия ВМТ-НМТ)дают искомые положения поршня при данных значениях угла .

Рис.2.36

На рис.2.36 показана зависимость перемещения поршня от угла поворота коленчатого вала.

Скорость поршня. Производная перемещения поршня — уравнение (1) по времени

вращения дает скорость перемещения поршня: (2)

Аналогично перемещению поршня скорость поршня может быть представлена также в виде двух составляющих: где - составляющая скорости поршня первого порядка, которая определяется ; - составляющая скорости поршня второго порядка, которая определяется Составляющая представляет собой скорость поршня при бесконечно длинном шатуне. Составляющая V2 является поправкой к скорости поршня на конечную длину шатуна. Зависимость изменения скорости поршня от угла поворота коленчатого вала показана на рис.2.37. Максимальные значения скорость достигает при углах поворота коленчатого вала меньше 90 и больше 270°. Значение максимальной скорости поршня с достаточной точностью может быть определено как

Ускорение поршня определяется как первая производная скорости по времени или как вторая производная перемещения поршня по времени: (3)

где и гармонические составляющие первого и второго порядка ускорения поршня соответственно. При этом первая составляющая выражает ускорение поршня при бесконечно длинном шатуне, а вторая составляющая — поправку ускорения на конечную длину шатуна. Зависимости изменения ускорения поршня и его составляющих от угла поворота коленчатого вала показаны на рис.2.38.

Ускорение достигает максимальных значений при положении поршня в ВМТ, а минимальных — в НМТ или около НМТ. Эти изменения кривой на участке от 180 до ±45° зависят от величины .

Отношение хода поршня к диаметру цилиндра является одним м основных параметров, который определяет размеры и массу двигателя. В автомобильных двигателях значения составляетот 0,8 до 1,2. Двигатели с > 1 называются длинноходными, а с < 1 — короткоходными. Данное отношение непосредственно влияет на скорость поршня, а значит и мощность двигателя. С уменьшением значения очевидны следующие преимущества: уменьшается высота двигателя; за счет уменьшения средней скорости поршня снижаются механические потери и уменьшается износ деталей; улучшаются условия размещения клапанов и создаются предпосылки для увеличения их размеров; появляется возможность увеличения диаметра коренных и шатунных шеек,- что повышает жесткость коленчатого вала.

Однако есть и отрицательные моменты: увеличивается длина двигателя и длина коленчатого вала; повышаются нагрузки на детали от сил давления газа и от сил инерции; уменьшается высота камеры сгорания и ухудшается ее форма, что в карбюраторных двигателях приводит к повышению склонности к детонации, а в дизелях — к ухудшению условий смесеобразования.

Целесообразным считается уменьшение значения при повышении быстроходности двигателя.

Значения для различных двигателей: карбюраторные двигатели - ; дизели средней быстроходности - ; быстроходные дизели - .

При выборе значений следует учитывать, что силы, действующие в КШМ, в большей степени зависят от диаметра цилиндра и в меньшей — от хода поршня.

Динамика кривошипно-шатунного механизма. При работе двигателя в КШМ действуют силы и моменты, которые не только воздействуют на детали КШМ и другие узлы, но и вызывают неравномерность хода двигателя. К таким силам относятся: сила давления газов уравновешивается в самом двигателе и на его опоры не передается; сила инерции приложена к центру возвратно-поступательно движущихся масс и направлена вдоль оси цилиндра, через подшипники коленчатого вала воздействуют на корпус двигателя, вызывая его вибрацию на опорах в направлении оси цилиндра; центробежная сила от вращающихся масс направлена по кривошипу в средней его плоскости, воздействуя через опоры коленчатого вала на корпус двигателя, вызывает колебания двигателя на опорах в направлении кривошипа. Кроме того, возникают такие силы, как давление на поршень со стороны картера, и силы тяжести КШМ, которые не учитываются в виду их относительно малой величины. Все действующие в двигателе силы взаимодействуют с сопротивлением на коленчатом валу, силами трения и воспринимаются опорами двигателя. В течение каждого рабочего цикла (720° — для четырехтактного и 360° для двухтактного двигателей) силы, действующие в КШМ, непрерывно меняются по величине и направлению и для установления характера изменения данных сил от угла поворота коленчатого вала их определяют через каждые 10÷300 для определенных положений коленчатого вала.

Силы давления газов действуют на поршень, стенки и головку цилиндра. Для упрощения динамического расчета силы давления газов заменяются одной силой, направленной по оси цилиндра и приложенной к оси поршневого пальца.

Данную силу определяют для каждого момента времени (угла поворота коленчатого вала ) по индикаторной диаграмме, полученной на основании теплового расчета или снятой непосредственно с двигателя с помощью специальной установки. На рис.2.39 показаны развернутые индикаторные диаграммы сил, действующих в КШМ, в частности изменение силы давления газов ( ) от величины угла поворота коленчатого вала. Силы инерции. Для определения сил инерции, действующих в КШМ, необходимо знать массы перемещающихся деталей. Для упрощения расчета массы движущихся деталей заменим системой условных масс, эквивалентных реально существующим массам. Такая замена называется приведением масс. Приведение масс деталей КШМ. По характеру движения массы деталей КШМ можно разделить на три группы: детали, движущиеся возвратно-поступательно (поршневая группа и верхняя головка шатуна); детали, совершающие вращательное движение (коленчатый вал и нижняя головка шатуна); детали, совершающие сложное плоско-параллельное движение (стержень шатуна).

Массу поршневой группы ( ) считают сосредоточенной на оси поршневого пальца и точке (рис.2.40.а). Массу шатунной группы заменяю двумя массами: - сосредоточена на оси поршневого пальца в точке , - на оси кривошипа в точке . Значения этих масс находят по формулам:

;

где - длина шатуна; - расстояние от центра кривошипной головки до центра тяжести шатуна. Для большинства существующих двигателей находится в пределе , а в пределе .Величина может быть определена через конструктивную массу, полученную на основании статистических данных. Приведенная масса всего кривошипа определяется суммой приведенных масс шатунной шейки и щек:

После приведения масс кривошипный механизм можно представить в виде системы, состоящей из двух сосредоточенных масс, соединенных жесткой невесомой связью (рис.2.41.б). Массы сосредоточенные в точке и совершающие возвратно-поступательное движение раны . Массы сосредоточенные в точке и совершающие вращательное движение раны . Для приближенного определения значения , и можно использовать конструктивные массы.

Определение сил инерции. Силы инерции, действующие в КШМ, в соответствии с характером движения приведенных масс, делятся на силы инерции поступательно движущихся масс и центробежные силы инерции вращающихся масс . Сила инерции от возвратно-поступательно движущихся масс может быть определена по формуле (4). Знак минус указывает на то, что сила инерции направлена в сторону противоположную ускорению. Центробежная сила инерции вращающихся масс постоянна по величине и направлена от оси коленчатого вала. Ее величина определяется по формуле (5) Полное представление о нагрузках, действующих в деталях КШМ, может быть получено лишь в результате совокупности действия различных сил, возникающих при работе двигателя.

Суммарные силы, действующие в КШМ. Силы, действующие в одноцилиндровом двигателе, показаны на рис.2.41. В КШМ действуют сила давления газов , сила инерции возвратно-поступательнодвижущихся масс и центробежная сила . Силы и приложены к поршню и действуют по его оси. Сложив эти две силы, получим суммарную силу, действующую по оси цилиндра: (6). Перемещенная сила в центр поршневого пальца раскладывается на две составляющие: - сила, направленная по оси шатуна: - сила, перпендикулярная стенке цилиндра. Сила PN воспринимается боковой поверхностью стенки цилиндра и обусловливает износ поршня и цилиндра. Сила , приложенная к шатунной шейке, раскладывается на две составляющие: (7) – тангенциальную силу, касательную к окружности радиуса кривошипа; (8) - нормальную силу (радиальную), направленную по радиусу кривошипа. По величине определяют индикаторный крутящий момент одного цилиндра: (9) Нормальная и тангенциальная силы, перенесенные в центр коленчатого вала, образуют равнодействующую силу , которая параллельна и равна по величине силе . Сила нагружает коренные подшипники коленчатого вала. В свою очередь силу можно разложить на две составляющие: силу P'N, перпендикулярную к оси цилиндра, и силу Р', действующую по оси цилиндра. Силы P'N и PN образуют пару сил, момент которой называется опрокидывающим. Его величина определяется по формуле (10) Данный момент равен индикаторному крутящему моменту и направлен в противоположную ему сторону: . Крутящий момент передается через трансмиссию ведущим колесам, а опрокидывающий момент воспринимается опорами двигателя. Сила Р' равна силе Р, и аналогично последней ее можно представить как . Составляющая уравновешивается силой давления газов, приложенной к головке цилиндра, а является свободной неуравновешенной силой, передающейся на опоры двигателя.

Центробежная сила инерции прикладывается к шатунной шейке кривошипа и направлена в сторону от оси коленчатого вала. Она так же как и сила является неуравновешенной и передается через коренные подшипники на опоры двигателя.

Силы, действующие на шейки коленчатого вала. На шатунную шейку действуют радиальная сила Z, тангенциальная сила Т и центробежная сила от вращающейся массы шатуна. Силы Z и направлены по одной прямой, поэтому их равнодействующая или (11)

Равнодействующая всех сил, действующих на шатунную шейку, рассчитывается по формуле (12) Действие силы вызывает износ шатунной шейки. Результирующую силу, приложенную к коренной шейки коленчатого вала, находят графическим способом, как силы, передающиеся от двух cмежных колен.

Аналитическое и графическое представление сил и моментов. Аналитическое представление сил и моментов, действующих в КШМ, представлено формулами (4) - (12).

Нагляднее изменение сил, действующих в КШМ в зависимости от угла поворота коленчатого вала, можно представить в качестве развернутых диаграмм, которые используются для расчета деталей КШМ на прочность, оценки износа трущихся поверхностей деталей, анализа равномерности хода и определения суммарного крутящего момента многоцилиндровых двигателей, а также построения полярных диаграмм нагрузок на шейку вала и его подшипники.

В многоцилиндровых двигателях переменные крутящие моменты отдельных цилиндров суммируются по длине коленчатого вала, в результате чего на конце вала действует суммарный крутящий момент. Значения этого момента можно определить графически. Для этого проекцию кривой на оси абсцисс разбивают на равные отрезки (число отрезков равняется числу цилиндров). Каждый отрезок делят на несколько равных частей (здесь на 8). Для каждой полученной точки абсциссы определяю алгебраическую сумму ординат двух кривых (над абсциссой значения со знаком «+», ниже абсциссы значения со знаком «-»). Полученные значения откладывают соответственно в координатах , и полученные точки соединяют кривой (рис.2.43). Эти кривая и является кривой результирующего крутящего момента за один рабочий цикл двигателя.

Для определения среднего значения крутящего момента подсчитывается площадь ограниченная кривой крутящего момента и осью ординат (выше оси положительное, ниже – отрицательное: где - длина диаграммы по оси абсцисс; -масштаб.

Так как при определении крутящего момента не учитывались потери внутри двигателя, то, выражая эффективный крутящий момент через индикаторный, получим где - механический КПД двигателя

Порядок работы цилиндров двигателя в зависимости от расположения кривошипов и числа цилиндров. В многоцилиндровом двигателе расположение кривошипов коленчатого пала должно, во-первых, обеспечивать равномерность хода двигателя, и, во-вторых, обеспечить взаимную уравновешенность сил инерции вращающихся масс и возвратно-поступательно движущихся масс. Дли обеспечения равномерности хода необходимо создать условия для чередования в цилиндрах вспышек через равные интервалы угла поворота коленчатого вала. Поэтому для однорядного двигателя угол , соответствующий угловому интервалу между вспышками при четырехтактном цикле рассчитывается по формуле , где i — число цилиндров, а при двухтактном по формуле . На равномерность чередования вспышек в цилиндрах многорядного двигателя, кроме угла между кривошипами коленчатого вала, влияет и угол между рядами цилиндров. Для удовлетворения требования уравновешенности необходимо, чтобы число цилиндров в одном ряду и соответственно число кривошипов коленчатого вала было четным, причем кривошипы должны быть расположены симметрично относительно середины коленчатого вала. Симметричное относительно середины коленчатого вала расположение кривошипов называется «зеркальным». При выборе формы коленчатого вала, кроме уравновешенности двигателя и равномерности его хода, учитывают также порядок работы цилиндров. На рис.2.44 приведены последовательности работ цилиндров однорядных (а) и V-образных (б) четырехтактных двигателей

Оптимальный порядок работы цилиндров, когда очередной рабочий ход происходит в цилиндре, наиболее удаленном от предыдущего, позволяет снизить нагрузки на коренные подшипники коленчатого вала и улучшить охлаждение двигателя.

Уравновешивание двигателей Силы и моменты, вызывающие неуравновешенность двигателя. Силы и моменты, действующие в КШМ, непрерывно меняются по величине и направлению. При этом, действуя на опоры двигателя, они вызывают вибрацию рамы и всего автомобиля, в результате чего ослабляются крепежные соединения, нарушаются регулировки узлов и механизмов, затрудняется использование контрольно-измерительными приборами, повышается уровень шума. Данное отрицательное воздействие снижают различными способами, в том числе подбором числа и расположения цилиндров, формы коленчатого вала, а также используя уравновешивающие устройства, начиная от простых противовесов и кончая сложными уравновешивающими механизмами.

Действия, направленные на устранение причин вибраций, т. е. неуравновешенности двигателя, называются уравновешиванием двигателя.

Уравновешивание двигателя сводится к созданию такой системы, в которой равнодействующие силы и их моменты постоянны по величине или равны нулю. Двигатель считается полностью уравновешенным, если при установившемся режиме работы силы и моменты, действующие на его опоры, постоянны по величине и направлению. У всех поршневых ДВС возникает реактивный момент, противоположный крутящему моменту, который называется опрокидывающим. Поэтому абсолютной уравновешенности поршневого ДВС достигнуть невозможно. Однако в зависимости от того, в какой степени устраняются причины, вызывающие неуравновешенность двигателя, различают двигатели полностью уравновешенные, частично уравновешенные и неуравновешенные. Уравновешенными считаются такие двигатели, в которых уравновешены все силы и моменты.

Условия уравновешенности двигателя с любым числом цилиндров: а) результирующие силы первого порядка поступательно движущихся масс и их моменты равны нулю; б) результирующие силы инерции второго порядка поступательно движущихся масс и их моменты равны нулю; в) результирующие центробежные силы инерции вращающихся масс и их моменты равны нулю.

Таким образом, решение уравновешивания двигателя сводится к уравновешиванию лишь наиболее значительных сил и их моментов.

Способы уравновешивания. Силы инерции первого и второю порядков и их моменты уравновешиваются подбором оптимального числа цилиндров, их расположения и выбором соответствующей схемы коленчатого вала. Если этого недостаточно, то силы инерции уравновешивают противовесами, расположенными на дополнительных валах, имеющих механическую связь с коленчатым валом. Это приводит к значительному усложнению конструкции двигателя и поэтому используется редко.

Центробежные силы инерции вращающихся масс можно уравновесить в двигателе с любым числом цилиндров установкой противовесов на коленчатом валу.

Предусмотренная конструкторами двигателя уравновешенность может быть сведена к нулю, если не будут выполняться следующие требования к производству деталей двигателя, сборке и регулировке его узлов: равенство масс поршневых групп; равенство масс и одинаковое расположение центров тяжести шатунов; статическая и динамическая сбалансированность коленчатого вала.

При эксплуатации двигателя необходимо, чтобы идентичные рабочие процессы во всех его цилиндрах протекали одинаково. А это зависит от состава смеси, углов опережения зажигания или впрыска топлива, наполнения цилиндров, теплового режима, равномерности распределения смеси по цилиндрам и т. д.

Балансировка коленчатого вала. Коленчатый вал, как и маховик, являясь массивной подвижной частью кривошипно-шатунного механизма, должен вращаться равномерно, без биений. Для этого выполняют его балансировку, которая заключается в выявлении неуравновешенности вала относительно оси вращения и подборе и креплении уравновешивающих грузов. Балансировка вращающихся деталей подразделяется на статическую и динамическую. Тела считаются уравновешены статически, если центр масс тела лежит на оси вращения. Статической балансировке подвергают вращающиеся детали дисковой формы, диаметр которых больше толщины.

Динамическая балансировка обеспечивается при соблюдении условия статической балансировки и выполнении второго условия — сумма моментов центробежных сил вращающихся масс относительно любой точки оси вала должна равняться нулю. При выполнении этих двух условий ось вращения совпадает с одной из главных осей инерции тела. Динамическая балансировка осуществляется при вращении вала на специальных балансировочных станках. Динамическая балансировка обеспечивает большую точность, чем статическая. Поэтому коленчатые валы, к которым предъявляются повышенные требования относительно уравновешенности, подвергаются динамической балансировке.

Динамическую балансировку выполняют на специальных балансировочных станках.

Балансировочные станки оборудованы специальной измерительной аппаратурой — устройством, которое определяет нужное положение уравновешивающего груза. Массу груза определяют последовательными пробами, ориентируясь на показания приборов.

Во время работы двигателя на каждый кривошип коленчатого вала действуют непрерывно и периодически изменяющиеся тангенциальные и нормальные силы, вызывающие в упругой системе узла коленвала переменные деформации кручения и изгиба. Относительные угловые колебания сосредоточенных на валу масс, вызывающие закручивание отдельных участков вала, называются крутильными колебаниями. При известных условиях знакопеременные напряжения, вызываемые крутильными и изгибными колебаниями, могут привести к усталостной поломке вала.

Крутильные колебания коленчатых валов сопровождаются также потерей мощности двигателя и отрицательно влияют на работу связанных с ним механизмов. Поэтому при проектировании двигателей, как правило, выполняется расчет коленчатых валов на крутильные колебания и при необходимости изменяют конструкцию и размеры элементов коленчатого вала так чтобы увеличить его жесткость и уменьшить моменты инерции. Если же указанные изменения не дают желаемого результата, могут быть применены специальные гасители крутильных коле6аний — демпферы. Их работа основывается на двух принципах: энергия колебаний не поглощается, а гасится за счет динамического воздействия в противофазе; энергия колебаний поглощается.

На первом принципе основаны маятниковые гасители крутильных колебаний, которые выполняются и виде противовесов и соединяются с бандажами, установленными на щеках первого колена с помощью штифтов. Маятниковый гаситель не поглощает энергию колебаний, а лишь аккумулирует ее во время закручивания вала и отдает запасенную энергию при его раскручивании до нейтрального положения.

Гасители крутильных колебаний, работающие с поглощением энергии, выполняют свои функции в основном за счет использования силы трения и делятся на следующие группы: гасители сухого трения; гасители жидкостного трения; гасители молекулярного (внутреннего) трения.

Данные гасители обычно представляют собой свободную массу, соединенную с системой вала в зоне наибольших крутильных колебаний нежесткой связью.








Дата добавления: 2016-03-05; просмотров: 4744;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.026 сек.