Закон Ома в дифференциальной форме

Найдем связь между векторами и . Для этого мыслен­но выделим в окрестности некоторой точки проводника элемен­тарный цилиндрический объем с образующими, параллельными векторам и , (см. рис. 4 ).

Между концами проводника длиной dl напряжение U = Edl, под действием которого через его поперечное сечение площадью dS течет ток I = jdS. Сопротивление цилиндрического проводника, в нашем случае, равно R = .Используя закон Ома для участка цепи I = , находим: jdS = , откуда и получаем закон Ома в дифференциальной форме = = , (16)

где = удельная электропроводность; [ ] = 1 / (Ом м) = 1 См / м, где 1 См = 1 / Ом – это единица измерения электропроводности в СИ, называемая сименс (См). Для металлов согласно классической теории электропроводности = , (17)

где n - концентрация свободных электронов, она может достигать 10 10 электрон / м ; e – заряд электрона, m – его масса; < > – средняя длина свободного пробега электрона; < v > = (18)

< v > – средняя скорость теплового движения электрона, k = 1,38 ×10 Дж/К - постоянная Больцмана. С учетом (18) из (17) следует, что ~ , а , тогда как опыт показывает, что ~ Т. Этот и другие недостатки классической теории электропроводности металлов устра­нила квантовая теория электропроводности.








Дата добавления: 2016-03-04; просмотров: 580;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.