Энергия упругой волны

Рассмотрим в среде, в которой распространяется упругая вол­на (22.10), элементарный объём достаточно малый, чтобы деформацию и скорость движения частиц в нём можно было считать постоянными и равными:

и . (22.37)

Вследствие распространения в среде волны объём обладает энергией упругой деформации

(22.38)

В соответствии с (22.35) модуль Юнга можно представить в виде . Поэтому:

. (22.39)

Рассматриваемый объём обладает также кинетической энергией:

. (22.40)

Полная энергия объёма:

. (22.41)

А плотность энергии:

. (22.42)

Но

, а (22.43)

Подставим эти выражения в (22.42) и учтем, что :

. (22.44)

Таким образом, плотность энергии различна в разных точках про­странства и меняется во времени по закону квадрата синуса.

Сред­нее значение квадрата синуса равно 1/2, а значит среднее по времени значение плотности энергии в каждой точке среды, в которой распространяется волна:

. (22.45)

 

Выражение (22.45) справедливо для всех видов волн.

 

Итак, среда, в которой распространяется волна, обладает дополнительным запасом энергии. Следовательно, волна переносит с собой энергию.








Дата добавления: 2016-02-11; просмотров: 588;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.