Классификация элементов и узлов ЭВМ

При рассмотрении структуры любой ЭВМ обычно проводят ее детализацию. Как правило, в структуре ЭВМ выделяют следующие структурные единицы: устройства, узлы, блоки и элементы. Такая детализация соответствует вполне определенным операциям преобразования информации, заложенным в программах пользователей.

Нижний уровень обработки реализуют элементы. Каждый элемент предназначается для обработки единичных электрических сигналов, соответствующих битам информации. Узлы обеспечивают одновременную обработку группы сигналов - информационных слов. Блоки реализуют некоторую последовательность в обработке информационных слов - функционально обособленную часть машинных операций (блок выборки команд, блок записи-чтения и др.). Устройства предназначаются для выполнения отдельных машинных операций и их последовательностей.

В общем случае любая структурная единица ЭВМ обеспечивает преобразование входной информации Х в выходную У (см. рис. 2.1).

Все современные вычислительные машины строятся на комплексах системах интегральных микросхем (ИС). Электронная микросхема называется интегральной, если ее компоненты и соединения между ними выполнены в едином технологическом цикле, на едином основании и имеют общую герметизацию и защиту от механических воздействий. Каждая микросхема представляет собой миниатюрную электронную схему, сформированную послойно в кристалле полупроводника: кремния, германия и т.д. В состав микропроцессорных наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, основанный на стандартизации параметров сигналов взаимодействия (амплитуда, полярность, длительность импульсов и т.п.). Основу набора обычно составляют большие БИС и даже сверхбольшие интегральные схемы. На очереди следует ожидать появления ультра больших ИС (УБИС). Кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинации простейших логических элементов, реализующих функции формирования, преобразования, запоминания сигналов и т.д.

Элементы ЭВМ можно классифицировать по различным признакам. Наиболее часто такими признаками являются: тип сигналов, назначение элементов, технология их изготовления и т.д.

В ЭВМ широко применяют два способа физического представления сигналов: импульсный и потенциальный. При импульсном способе представления сигналов единичному значению некоторой двоичной переменной ставится в соответствие наличие импульса (тока или напряжения), нулевому значению - отсутствие импульса Длительность импульсного сигнала не превышает один такт синхроимпульсов.

При потенциальном или статическом представлении сигналов единично значение двоичной переменной отображается высоким уровнем напряжения, а нулевое значение - низким уровнем

Независимо от вида сигналов различают последовательный и параллельный коды передачи и представления информации в ЭВМ.

При последовательном коде представления данных используются одиночные шины или линии передачи, в которых сигналы, соответствующие отдельным разрядам данных, разнесены во времени. Обработка такой информации производится последовательно разряд за разрядом. Такой вид представления и передачи данных требует весьма экономичных по аппаратурным затратам схем обработки данных. Время же обработки Определяется числом обрабатываемых сигналов (разрядов).

Параллельный код отображения и передачи информации предполагает параллельную и одновременную фиксацию всех разрядов данных на различных шинах, т.е. параллельный код данных развернут в пространстве. Это дает возможность ускорить обработку во времени, но затраты на аппаратурные средства при этом возрастают пропорционально числу обрабатываемых разрядов.

Во всех вычислительных машинах используются и параллельно-последовательные коды представления информации. При этом информация отображается частями. Части поступают на обработку последовательно, а каждая часть данных представляется параллельным кодом.

По своему назначению элементы делятся на формирующие, логические и запоминающие.

К формирующим элементам относятся различные формирователи, усилители, усилители-формирователи и т.п. Данные элементы служат для выработки определенных электрических сигналов, восстановления их параметров (амплитуды, полярности, мощности, длительности).

В каждой ЭВМ имеются специальные блоки, формирующие сигналы тактовой частоты, серии синхронизирующих и управляющих сигналов, координирующих работу всех схем ЭВМ. Интервал времени между импульсами основной частоты называется тактом. Длительность такта является важной характеристикой ЭВМ, определяющей ее потенциальную производительность. Время выполнения любой операции ЭВМ связано с определенным числом тактов.

Простейшие логические элементы преобразуют входные сигналы в соответствии с элементарными логическими функциями, рассмотренными в п.2.4. В свою очередь, полученные сигналы могут формировать следующий уровень сигналов и т. д. Сложные преобразования в соответствии с требуемыми логическими зависимостями могут приводить к построению многоуровневых схем. Каждая такая схема представляет собой композицию простейших логических схем.

Запоминающим элементом называется элемент, который способен принимать и хранить код двоичной цифры (единицы или нуля). Элементы памяти могут запоминать и сохранять исходные значения некоторых величин, промежуточные значения обработки и окончательные результаты вычислений. Только запоминающие элементы в схемах ЭВМ позволяют проводить обработку информации с учетом ее развития.

 








Дата добавления: 2016-02-20; просмотров: 1182;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.