Эконометрика - лекции 6 страница
ДВУХ ВРЕМЕННЫХ РЯДОВ
Изучение причинно-следственных зависимостей переменных представленных в виде временных рядов, является одной из самых сложных задач эконометрического моделирования. Применение в этих целях традиционных методов корреляционно-регрессионного анализа рассмотренных в главах ранее, может привести к ряду серьезных проблем, возникающих как на этапе построения, так и этапе анализа эконометрических моделей. В первую очередь эти проблемы связаны со спецификой временных рядов как источника данных в эконометрическом моделировании. Ранее показано, что каждый уровень временного ряда содержит три основные компоненты: тенденцию, циклические или сезонные колония и случайную компоненту. Рассмотрим подробнее, каким образом наличие этих компонент сказывается на результатах корреляционно-регрессионного анализа временных рядов данных.
Предварительный этап такого анализа заключается в выявлении структуры изучаемых временных рядов. Если на этом этапе было выявлено, что временные ряды содержат сезонные или циклические колебания то перед проведением дальнейшего исследования взаимосвязи необходимо устранить сезонную или циклическую компоненту из уровней каждого ряда, поскольку ее наличие приведет к завышению истинных показателей силы и тесноты связи изучаемых временных рядов в случае, если оба ряда содержат циклические колебания одинаковой периодичности. Либо к занижению этих показателей в случае, если сезонные или циклические колебания содержат только один из рядов или периодичность колебаний в рассматриваемых временных рядах различна.
Устранение сезонной компоненты из уровней временных рядов можно проводить в соответствии с методикой построения аддитивной и мультипликативной моделей, рассмотренной ранее. При дальнейшем изложении методов анализа взаимосвязей в этой главе мы примем предположение, что изучаемые временные ряды не содержат периодических колебании. Предположим, изучается зависимость между рядами х и у. Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким (положительным в случае совпадения и отрицательным в случае противоположной направленности тенденций рядов х и у). Однако из этого еще нельзя делать вывод о том, что х причина у или наоборот. Высокий коэффициент корреляции в данном случае есть результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970 по 1990 г. составил 0,8. Это, естественно, не означает, что увеличение количества домов отдыха способствует росту числа выпускников вузов или увеличение числа последних стимулирует спрос на дома отдыха.
Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряде. Обычно это осуществляют с помощью одного из методов исключения тенденции, которые будут рассмотрены далее.
Предположим, что по двум временным рядам х, и у, строится уравнение парной линейной регрессии вида
Наличие тенденции в каждом из этих временных рядов означает, что на зависимую , и независимую , переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков , за текущий и предыдущие моменты времени, которая получила название «автокорреляция в остатках».
Автокорреляция в остатках есть нарушение одной из основных предпосылок МНК — предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении к оценке параметров модели обобщенного МНК. При построении уравнения множественной регрессии по временным рядам данных, помимо двух вышеназванных проблем, возникает также проблема мультиколлинеарности факторов, входящих в уравнение регрессии, в случае если эти факторы содержат тенденцию.
6.2. МЕТОДЫ ИСКЛЮЧЕНИЯ ТЕНДЕНЦИИ
Сущность всех методов исключения тенденции заключается в том, чтобы устранить или зафиксировать воздействие фактора времени на формирование уровней ряда. Основные методы исключения тенденции можно разделить на две группы.
• методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции. Полученные переменные используются далее для анализа взаимосвязи изучаемых временных рядов. Эти методы предполагают непосредственное устранение трендовой компоненты Т из каждого уровня временного ряда. Два основных метода в данной группе — это метод последовательных разностей и метод отклонений от трендов;
• методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимые переменные модели. В первую очередь это метод включения в модель регрессии по временным рядам фактора времени. Рассмотрим подробнее методику применения, преимущества и недостатки каждого из перечисленных выше методов.
Дата добавления: 2016-02-09; просмотров: 821;