Классическая теория электропроводности металлов. На основании ряда экспериментальных данных, полученных учеными Рикке, Мандельштамом и Папалекси, Толменом и Стюартом в начале XX в

 

На основании ряда экспериментальных данных, полученных учеными Рикке, Мандельштамом и Папалекси, Толменом и Стюартом в начале XX в. было установлено, что носителями тока в металлах являются электроны.

Некоторые свойства электрона были описаны Томсоном в 1895-97 гг.

Большая концентрация электронов в металлах (no » 1028 - 1029 м-3) обуславливает в них высокую тепло- и электопроводимость. Позднее была создана классическая теория электропроводности металлов Друде-Лоренца.

В основу теории были положены выводы классической молекулярно-кинетической теории, в которой электроны проводимости рассматриваются как электронный газ и его свойства подобны свойствам одноатомного, идеального газа. Число свободных электронов равно примерно числу атомов.

Согласно классической электронной теории проводимости металлов в отсутствии электрического поля в них электроны проводимости (электронный газ) находятся в состоянии теплового хаотического движения в кристаллической решетке, образованной положительно заряженными ионами.

Ионы совершают тепловые колебания около положений равновесия - узлов кристаллической решетки. При своем движении электроны испытывают столкновения с ионами. Длина свободного пробега электронов , т. е. по порядку равна периоду кристаллической решетки. В соответствии с выводами молекулярно-кинетической теории средняя кинетическая энергия теплового движения электронов ,

где m - масса электрона; <vкв> - средняя квадратичная скорость теплового движения. Например, при температуре Т = 273 К, <vкв> » 105 м/c.

При создании электрического поля в металлических проводниках возникает электрический ток, плотность которого

, (1)

где n0 - концентрация электронов; qe - заряд электрона; <v> - средняя скорость упорядоченного движения. Электроны имеют скорость v = <u> + <v>.

Следовательно, под действием напряженности электрического поля электроны в проводнике приходят в упорядоченное движение в направлении противоположном вектору напряженности электрического поля.

При максимально допустимой плотности тока в металлах cредняя скорость упорядоченного движения <v> » 10-3 м/c, т. е. <v> << <u>, что объясняется малым значением средней длины свободного пробега электрона между двумя последовательными столкновениями его с ионами.

Вывод закона Ома

 

По классической теории проводимости металлов при соударении электрона с ионом он полностью теряет свою скорость.

Уравнение движения электрона в электрическом поле в процессе свободного пробега является равноускоренным.

Поэтому на основании второго закона Ньютона

F = ma = m ,

где F = qeE; Е - напряженность электрического поля.

Средняя скорость упорядоченного движения

<v> = .

Если средняя продолжительность времени свободного пробега <t>, то после интегрирования

F = ma = m

получим, что <vмах> =

или

<v> = . (2)

Если <u> всех электронов одинаковы, но <v> << <u>, найдем среднее время пробега электрона

.

С учетом этого формулу (2) перепишем в виде:

. (3)

Следовательно, плотность тока

, (4)

где (5)

- удельная электропроводимость проводника.

Таким образом, на основании классической теории проводимости металлов был теоретически получен закон Ома в дифференциальной форме

j = g E.








Дата добавления: 2016-02-09; просмотров: 762;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.