Валентность. Электроотрицательности элементов. Степень окисления атомов. Понятие о гибридизации атомных орбиталей. Геометрия молекул.

Происхождение понятия валентности. Валентность химических элементов является одним из самых важных их свойств. Понятие валентности было введено в науку Э. Франкландом в 1852 г. Вначале понятие носило исключительно стехиометрический характер и вытекало из закона эквивалентов. Смысл понятия валентности вытекал из сопоставления величин атомной массы и эквивалента химических элементов.

Электровалентность и ковалентность. Положительная или отрицательная валентность элемента – проще всего определить, если два элемента образовывали ионное соединение: считалось, что элемент, атом которого стал положительно заряженным ионом, проявил положительную валентность, а элемент, атом которого стал отрицательно заряженным ионом, – отрицательную. Численное значение валентности считалось равным величине заряда ионов. Поскольку ионы в соединениях образуются посредством отдачи и присоединения атомами электронов, величина заряда ионов обусловливается числом отданных (положительный) и присоединенных (отрицательный) атомами электронов. В соответствии с этим положительная валентность элемента измерялась числом отданных его атомом электронов, а отрицательная валентность – числом электронов, присоединенных данным атомом. Таким образом, поскольку валентность измерялась величиной электрического заряда атомов, она и получила название электровалентности. Ее называют также ионной валентностью.

Степень окисления и окислительное число. При реакциях образования ионных соединений переход электронов от одних реагирующих атомов или ионов к другим сопровождается соответствующим изменением величины или знака их электровалентности. При образовании соединений ковалентной природы такого изменения электровалентного состояния атомов фактически не происходит, а только имеет место перераспределение электронных связей, причем валентность исходных реагирующих веществ не изменяется. В настоящее время для характеристики состояния элемента в соединениях введено условное понятиестепени окисления. Численное выражение степени окисления называютокислительным числом.

Окислительные числа атомов могут иметь положительное, нулевое и отрицательное значения. Положительное окислительное число определяется числом электронов, оттянутых от данного атома, а отрицательное окислительное число – числом притянутых данным атомом электронов. Окислительное число может быть приписано каждому атому в любом веществе, для чего нужно руководствоваться следующими простыми правилами:

1. Окислительные числа атомов в любых элементарных веществах равны нулю.

2. Окислительные числа элементарных ионов в веществах ионной природы равны значениям электрических зарядов этих ионов.

3. Окислительные числа атомов в соединениях ковалентной природы определяются при условном расчете, что каждый отянутый от атома электрон придает ему заряд, равный +1, а каждый притянутый электрон – заряд, равный –1.

4. Алгебраическая сумма окислительных чисел всех атомов любого соединения равна нулю.

5. Атом фтора во всех его соединениях с другими элементами имеет окислительное число –1.

Определение степени окисления связано с понятием об электроотрицательности элементов. С использованием этого понятия формулируется еще одно правило.

6. В соединениях окислительное число отрицательно у атомов элементов с большей электроотрицательностью и положительно – у атомов элементов с меньшей электроотрицательностью.

Координационное число. Первоначальное понятие валентности оказалось явно недостаточным для установления природы более сложных соединений, чем рассмотренные выше. А. Вернер в 1891 г. для случаев, когда к молекулам соединений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (в 1893 г.) он ввел в химию понятие координационного числа, которое соответствует числу атомов или групп, непосредственно связанных с атомом, считающимся в молекуле центральным. Эти связанные с центральным атомом частицы, роль которых могут играть атомы, группы атомов, элементарные и сложные ионы, в настоящее время названы лигандами. Таким образом, координационное число показывает, сколько лигандов скоординировано около центрального атома.

С течением времени понятие побочной валентности постепенно утрачивало свое значение, понятие же координационного числа оказалось чрезвычайно плодотворным. Первоначально же Вернер подчеркивал, что понятие координационного числа есть чисто экспериментальное.

Значения координационного числа обычно соответствуют числу вершин в правильных многогранниках (тетраэдр – 4, октаэдр – 6, куб – 8, додекаэдр – 12) или в простейших правильных плоских фигурах (отрезок прямой линии – 2, равносторонний треугольник – 3, квадрат – 4).

Метод гиб­ридизации атомных орбиталей исходит из предположения, что при образовании молекулы вместо исходных атомных S-, р~ и d-элек­тронных облаков образуются такие равноценные «смешанные» или гибридные электронные облака, которые вытянуты по на­правлению к соседним атомам, благодаря чему достигается их бо­лее полное перекрывание с электронными облаками этих атомов. Такая деформация электронных облаков требует затраты энергии. Но более полное перекрывание валентных электронных облаков приводит к образованию более прочной химической связи и, сле­довательно, к дополнительному выигрышу энергии. Если этот вы­игрыш энергии достаточен, чтобы с избытком скомпенсировать затраты энергии на деформацию исходных атомных электронных облаков, — такая гибридизация приводит, в конечном счете, к уменьшению потенциальной энергии образующейся молекулы и, следовательно, к повышению ее устойчивости. Рассмотрим в качестве примера гибридизации образование мо­лекулы фторида бериллия ВеF2. Каждый атом фтора, входящий в состав этой молекулы, обладает одним неспаренным электроном который и участвует в образовании ковалентной связи. Атом бе­риллия в невозбужденном состоянии (1S22S2) неспаренных элек­тронов не имеет.S- и р-орбиталей атома бериллия могут образо­ваться две равноценные гибридные орбита ли (Sр-орбитали). Форма и расположение этих орбиталей, из которых видно, что гибридные Sр-орбитали вытянуты в противо­положных направлениях. Перекрывание гибридных. Благодаря вытянутой форме гибридных орбиталей достигается более полное перекрывание взаимодействующих электронных облаков, а значит, образуются более прочные химические связи. Рассмотренный случай гиб­ридизации одной S- и одной р-орбитали, приводящий к образованию двух Sр-орбиталей, назы­вается Sр гибридизацией., 5р-орби-тали ориентированы в противоположных направлениях, что при­водит к линейному строению молекулы. Действительно, молекула ВеР2 линейна, а обе связи Ве — Р в этой молекуле во всех отноше­ниях равноценны.








Дата добавления: 2016-01-16; просмотров: 1568;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.