Матричные методы умножения
Кроме рассмотренных методов ускоренного умножения существуют методы умножения, основанные на использовании матриц промежуточных результатов.
Пусть имеем сомножители:
Мн = А = аn ... a2 a1
Мт = B = bn ... b2 b1
Рассмотрим схему умножения чисел согласно алгоритму Б. Данная схема умножения может быть представлена в виде матрицы (табл.3).
Каждый элемент ai bj ( i, j = 1, n) принимает значение 0 или 1. Произведение A∙B может быть получено, если суммировать элементы матрицы (по диагонали).
Для суммирования по столбцам могут быть использованы счетчики. Однако при достаточно большом значении величины n потребуются счетчики с большим числом входов, что существенно увеличит время сложения. Но этот принцип умножения может быть реализован на устройствах, имеющих не более трех входов. В качестве их могут быть использованы одноразрядные двоичные сумматоры и полусумматоры.
На рис. 10 приведена структурная схема устройства умножения для реализации матричного алгоритма.
Реализация методов матричного умножения требует большего количества оборудования, чем метод последовательного умножения, и дает больший выигрыш во времени. В связи с увеличением степени интеграции элементной базы ограничения по количеству оборудования становятся не столь строгими.
Дата добавления: 2016-01-09; просмотров: 782;