Периодические процессы
Определение.Функция , определенная на множестве , называется периодической если существует такое число , что при каждом , значение и выполняется равенство . Наименьшее из таких чисел называют основным периодом функции.
Простейшими периодическими функциями являются тригонометрические функции и . Период этих функций равен , т. е. .
Простейшим периодическим процессом (движением) является простое гармоническое колебание (движение), описываемое функцией
, ,
где А – амплитуда колебания, - частота, - начальная фаза.
Функцию такого вида называют простой гармоникой. Основным периодом функции является , т. е. одно полное колебание совершается за промежуток времени ( показывает, сколько колебаний совершает точка в течение единиц времени).
Сложное гармоническое колебание (периодический процесс), возникающее в результате наложения конечного (или бесконечного) числа простых гармоник, также описывается функциями вида и .
Определение.Тригонометрическим рядом называется функциональный ряд вида
,
действительные числа называются коэффициентами ряда.
Замечание.Тригонометрическийряд можно переписать в виде
.
Значит, любой периодический процесс, можно задать тригонометрическим рядом, т.е. наложением простых гармоник.
Члены такого ряда удовлетворяют соотношениям (m и n целые положительные числа):
при любом n,
.
Замечание.Приведенные соотношения показывают, что семейство функций обладает свойством ортогональности, т.е.интеграл от произведения любых двух различных функций этого семейства на интервале, имеющем длину , равен нулю.
Будем рассматривать функции , имеющие период . Такие функции называют - периодическими.
Пусть - произвольная периодическая функция с периодом . Тогда можно построить тригонометрический ряд на отрезке следующим образом:
,
где , , .
Определение.Числа , определяемые по данным формулам, называются коэффициентами Фурье функции , а тригонометрический ряд с такими коэффициентами – рядом Фурье функции ; при этом говорят: функции соответствует (поставлен в соответствие) ее ряд Фурье.
Дата добавления: 2016-01-09; просмотров: 1074;