ОПЕРАЦИИ НАД ТЕНЗОРАМИ
1. Умножение тензора на скаляр есть новый тензор, все компоненты которого умножены на этот скаляр (шаровой тензор):
.
2. Сумма тензоров есть новый тензор с компонентами, являющимися суммой одноимённых компонент слагающих тензоров. Так доля Т = Т´ + T´´ должна быть tik = t´ik + t´´ik. То, что такая сумма есть тензор, следует из линейности формул (4*).
3. Тензор, обладающий свойством tik = tki , называется симметричным. Если таблицу компонент такого тензора «повернуть» вокруг главной диагонали (то же, что и у определителя), то получится тот же самый тензор.
4. Пусть имеется тензор Т с компонентами tik .Составим таблицу с компонентами tki ( т.е. повёрнутую вокруг главной диагонали). Можно показать, что она также определяет тензор, который называется сопряжённым и обозначается Т*. Очевидно, что (T*)* = T.
5. Тензор, у которого tik = - tki, называется антисимметричным. Из определения следует, что tii = - tii, т.е. tii = 0 – компоненты главной диагонали равны 0. Антисимметричный тензор всегда можно записать в виде .
6.Всякий тензор можно разложить на сумму симметричного и антисимметричного тензоров: Т = ½ (Т + Т*) + ½ (Т - Т*). Легко проверить, что в первой скобке стоит симметричный, а во второй – антисимметричный тензор.
7.Пусть дан тензор Т и вектор .Скалярное произведение тензора Т на вектор справа есть новый вектор , обозначаемый (Т, ), компоненты которого равны
(i = 1,2,3).
8.Скалярное произведение тензора Т на вектор слева есть вектор , обозначаемый ( ,Т), компоненты которого равны
.
9.Из приведённых определений операций ясно, что они должны обладать ассоциативностью и дистрибутивностью, т.е., например,
(Т1 + Т2 ) = (Т1, ) + (Т2, );
( 1 + 2, Т) = ( 1, Т) + ( 2, Т);
(l , Т) = ( , lТ) = l ( , Т).
Но коммутативностью эти операции не обладают, т.е. в общем случае ( , Т) ¹ (Т, ). Если Т – симметричный тензор, то равенство выполняется.
10.Пусть даны тензоры А, В с компонентами aik и bik. Скалярное произведение тензора А на тензор В (А, В)есть новый тензор Т, компоненты которого вычисляются по формулам:
.
Это определение совпадает с определением матричного умножения. Компонент tik получается умножением строки с номером i тензора А на столбец с номером j тензора В. Например, t23 = а21b13 + а22 b23 + а23 b33.
11.Скалярное произведение тензоров не обладает свойством коммутативности, т.е. вообще говоря, (А,В) ¹ (В,А).
Перечислим некоторые свойства, которыми оно обладает:
(lА,В) = (А,lВ) = l (А,В); (l - скаляр);
(А1 + А2, В) = (А1,В)+ (А2,В);
(А,В1 + В2) = (А,В1) + (А,В2);
[(А,В), С) = (А,(В,С)].
4. НАПРЯЖЕНИЯ И ДЕФОРМАЦИИ В ТВЁРДЫХ СРЕДАХ
Дата добавления: 2016-01-09; просмотров: 757;