Факторы, определяющие аэробную производительность
Важнейшим из всех рассмотренных параметров биоэнегетиических механизмов является показатель мощности аэробных механизмов - показатель МПК, который в значительной мере определяет общую физическую работоспособность. Вклад этого показателя в специальную физическую работоспособность в циклических видах спорта, в дистанциях, начиная со средних дистанций, составляет от 50 до 95%, в игровых видах спорта и единоборствах - от 50 до 60% и более. По крайней мере, во всех видах спорта, по мнению А.А. Гуминского (1976) величина МПК определяет так называемую "общую тренировочную работоспособность".
МПК у физически малоподготовленных мужчин в возрасте 20-30 лет в среднем составляет 2,5-3,5 л/мин или 40-50 мл/кг.мин (у женщин примерно на 10% меньше). У выдающихся спортсменов (бегунов, лыжников и т.д.) МПК достигает 5-6 л/мин (до 80 мл/кг.мин и выше). Движение атмосферного кислорода в организме от легких до тканей определяет участие в кислородном транспорте следующих систем организма: система внешнего дыхания (вентиляция), система крови, сердечно-сосудистая система (циркуляция), система утилизации организмом кислорода.
Повышение и совершенствование (повышение КПД) аэробной производительности (АП) в процессе тренировки в первую очередь связано с повышением производительности систем вентиляции, затем циркуляции и утилизации; их включение идет не параллельно и постепенно всех разом, а гетерохронно: на начальном этапе адаптации доминирует система вентиляции, затем циркуляции и на этапе высшего спортивного мастерства - система утилизации (С.Н. Кучкин, 1983, 1986).
Общий размер прироста АП разными авторами определяется от 20 до 100%, однако исследования в лаборатории физиологии ВГАФК (С.Н. Кучкин, 1980, 1986) показали, что общий размер прироста показателя относительного МПК составляет в среднем 1/3 от исходного (генетически детерминированного уровня) - т.е. около 35%. Причем на этапе начальной подготовки прирост МПК наиболее ощутим и составляет до 20% (половину от общего прироста), на этапе спортивного совершенствования (II этап адаптации) прирост МПК/вес замедляется и составляет около 10%, а на этапе высшего спортивного мастерства (III этап адаптации) прирост минимален - до 5-7%.
Таким образом, начальный период адаптации является наиболее благоприятным для тренировки аэробных возможностей, а окончание этого этапа является важным для определения перспективности данного спортсмена в отношении аэробной работоспособности.
Рассмотрим кратко основные изменения в системах организма, ответственных за кислородный транспорт при развитии выносливости.
В системе внешнего дыхания в первую очередь увеличиваются резервы мощности – это показатели ЖЕЛ, МВЛ, силы и выносливости дыхательных мышц. Так, у высококвалифицированных пловцов, гребцов-академистов показатели ЖЕЛ могут достигать 8-9 литров, а МВЛ – до 250-280 л/мин и выше. Резервы мощности – это резервы первого эшелона, и включаются они в повышение АП уже на начальных этапах адаптации. Поэтому всем начинающим спортсменам и в начале общеподготовительного периода можно смело рекомендовать разнообразные дыхательные упражнения, что будет способствовать лучшей аэробной адаптации.
На более поздних этапах адаптации улучшается способность к мобилизации резервов мощности, а позднее – повышается экономичность (эффективность) внешнего дыхания (С.Н. Кучкин, 1983, 1986, 1991). Так, спортсмены-мастера могут использовать ЖЕЛ на 60-70% при тяжелой работе (против 30-35% - у начинающих). Более эффективно поглощается кислород из вдыхаемого воздуха (по показателям коэффициента использования кислорода, вентиляционного эквивалента и др.), что обеспечивает высокие величины МПК при вентиляции «всего» в 100-120 л/мин и невысокой частоте дыхания. Этому способствуют и механизмы более эффективной работы системы тканевой утилизации кислорода в работающих мышцах, в которых может использоваться почти 100% доставляемого к ним кислорода.
В системе крови, как правило, не наблюдается повышенного содержания эритроцитов и гемоглобина. Но увеличение обмена циркулирующей крови (преимущественно за счет плазмы), появление так называемой гемоконцентрации (увеличения содержания гемоглобина за счет выхода части плазмы в ткани), в результате которой при работе циркулирующая кровь имеет на 10-18% гемоглобина больше, что приводит к повышению так называемой кислородной емкости крови.
Значительные изменения при развитии выносливости происходят в системе циркуляции – сердечно-сосудистой системе. В первую очередь это сказывается на повышении резервов мощности – производительности сердца (систолический объем может достигать 180-210 мл, что при эффективной ЧСС в 180-190 уд/мин может дать МОК в 32-38 литров/мин). Это связано с обязательным увеличением общего объема сердца с 750 мл до 1200 мл и более, обусловленных рабочей гипертрофией и тоногенной дилотацией (расширением) полостей сердца.
Резервы регуляторных механизмов заключаются формировании брадикардии покоя и относительной рабочей брадикардии при выполнении аэробной работы. Сравните: резерв по ЧСС у тренированных равен: , а у нетренированных –
. То есть, только по ЧСС резерв с тренировкой составит 164%.
Еще один важный регуляторный механизм : через сосуды работающих мышц у тренированных проходит гораздо больше крови, чум в неработающие мышцы. В.В. Васильева (1986) показала, что это связано с изменением просвета сосудов в соответствующих мышцах. Совершенствование системы утилизации связано в значительной мере с изменениями в работающих мышцах: увеличением количества медленных мышечных волокон с аэробными механизмами энергопродукции; рабочей гипертрофией саркоплазматического типа и увеличением количества митохондрий; значительно более высокой капилляризацией, а, следовательно, более высоким кислородным обеспечением; значительным аэробными биохимическими перестройками в мышцах (повышение емкости и мощностиаэробного механизма за счет увеличения содержания и активности ферментов окислительного метаболизма в 2-3 раза, увеличения содержания миоглобина в 1,5-2 раза, а также гликогена и липидов на 30-50% и др.).
Таким образом, тренировка выносливости вызывает следующие основные функциональные эффекты:
1. Повышение и совершенствование всех качественных и количественных показателей аэробного механизма энергообеспечения, что проявляется при максимальной аэробной работе.
2. Повышение экономичности деятельности организма, что проявляется в уменьшении затрат на единицу работы и в меньших функциональных сдвигах при стандартных нагрузках (ЧСС, вентиляция, лактат и др.) .
3. Повышение резистентности – способности организма противостоять сдвигам во внутренней среде организма, сохраняя гомеостаз, компенсируя эти сдвиги.
4. Совершенствование терморегуляции и повышение резервов энергетических ресурсов.
5. Повышение эффективности координации работы двигательных и вегетативных функций при непосредственной регуляции посредством нервных и гуморальных механизмов.
Дата добавления: 2015-12-26; просмотров: 1969;