Антропогенные факторы, их влияние на организмы.
Антропогенные факторы - это формы деятельности человека, влияющие на живые организмы и условия среды их обитания:рубка, вспашка, орошение, выпас, строителсьтво водохранилищ, водо–нефте-газопроводов, прокладка дорог, ЛЭП и др. Воздействие деятельности человека на живые организмы и условия среды их обитания могут быть прямыми и косвенными. Например, вырубая деревья в лесу при заготовке древесины он оказывает прямое воздействия на вырубаемые деревья (валка, очистка от ветвей, распиловка, вывоз и др.) и одновременно оказывает косвенное воздействие на растения древесного полога, изменяя условия среды их обитания: освещение, температуру, циркуляции воздуха и т.д. На лесосеке из-за изменения условий среды обитания дальше не смогут жить и развиваться тенелюбивые растения и все организмы, связанные с ними. Среди абиотических факторов выделяют климатические (освещение, температура, влажность, ветер, давление и др.) и гидрографические (вода, течение, соленость, проточный стоячий и др) факторы.
Факторы, влияющие на организмы и условия среды их обитания изменяются в течение суток, по сезоном года и по годам (температура, количество осадков, освещение и др). Поэтому различают регулярно меняющиеся и возникающие спонтанно(неожиданно) факторы. Регулярно меняющиеся факторы называются периодическими факторами. К ним относятся смена дня и ночи, сезонов года, приливы и отливы и др. К воздействию этих факторов живые организмы адаптировались в результате длительной эволюции. Факторы, возникающие спонтанно называются непериодическими. К ним относятся извержение вулканов, наводнение, пожары, селевые потоки, нападение хищника на жертву и др. К воздействию не пероидических факторов живые организмы не адаптированы и не имеют каких-либо приспособлений. Поэтому они приводят к гибели, увечью и болезням живых организмов, разрушают их местообитания.
Непериодические факторы человек нередко использует в своих интересах. Например, для улучшения возобновления травостоя пастбищ и сенокосов он устраивает весной пал, т.е. поджигает старую растительность; используя пестециды и гербициды уничтожает вредителей сельскохозяйственных культур, сорняков полей и огородов, уничтожает болезнотворных микроогранизмов, бактерии и беспозвоночных и тд
Совокупность факторов одного рода составляет верхний уровень понятий. Нижний уровень понятий связан с познанием отдельных экологических факторов (табл. 3).
Таблица 3 - Уровни понятия «экологический фактор»
Верхний уровень понятия | Совокупность абиотических факторов природы | Совокупность биотических факторов природы |
Нижний уровень понятия | Отдельный абиотический фактор | Отдельный биотический фактор |
Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.
Закон оптимума. Каждый фактор имеет лишь определенные пределы положительного влияния на организмы. Благоприятная сила воздействия называется зоной оптимума экологического фактора или просто оптимумом для организмов данного вида (рис. 5).
Рисунок 5 – Зависимость результаты действия экологического фактора от его интенсивности
Чем сильнее отклонения от оптимума, тем больше выражено угнетающее действие данного фактора на организмы (зона пессимума). Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование уже невозможно, наступает смерть. Пределы выносливости между критическими точками называют экологической валентностью живых существ по отношению к конкретному фактору среды. Точки, ограничивающие его, т.е. максимальная и минимальная температуры, пригодные для жизни, - это пределы устойчивости. Между зоной оптимума и пределами устойчивости растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения в рамках диапазона устойчивости. По мере удаления от оптимума в конечном итоге по достижении пределов устойчивости организма происходит его гибель.
Виды, для существования которых необходимы строго определенные экологические условия, маловыносливые виды называют стенобионтными (узкая экологическая валентность), а те, которые способны приспосабливаться к разной экологической обстановке, выносливые — эврибионтными (широкая экологическая валентность) (рис. 6).
Рисунок 6 – Экологическая пластичность видов (по Ю. Одум, 1975)
Эврибионтность способствует широкому распространению видов. Стенобионтность обычно ограничивает ареалы.
Отношение организмов в колебаниям того или иного определенного фактора выражается прибавлением приставки эври- или стено- к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей – эври- и стеногалинные, к свету – эври- и стенофотные и т.д.
Закон минимума Ю.Либиха.Немецкий агроном Ю.Либих в 1870 году в первые установил, что урожай (продукция) зависит от фактора, находящегося в среде обитания в минимуме, и сформулировая закон минимума, который гласит: “веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последного во времени”.
Формилируя закон Либих имел в виду, лимитирущие воздействие на растений жизненно важных химических элементов, присутствующих в среде их обитания в небольших и непостоянных количествах. Эти элементы называются микроэлементами. К ним относятся: медь, цинк, железо, бор, кремний, молибден, ванадий, кобальт, хлор, иод, натрий. Микроэлементы, подобно витаминам, действуют как катализаторы, химические элементы фосфор, калий, кальций, магний, сера, требующиеся организмам в сравнительно большом почестве называются макроэлементами. Но, если этих элементов в почве содержится больше, чем необходимо для нормальный жизнедеятельности организмов, то они также являются лимитирующими. Таким образом, микро- и макроэлементов в среде обитания живых организмов должно содержаться столько, сколько небоходимо для их нормального существования и жизнедеятельности. Измение содержания микро- и макроэлементов в сторону уменьшения или увеличения от необходимого количества-лимитирует существование живых организмов.
Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в пустынные районы - недостатком влаги или слишком высокими температурами. Ограничивающим распространение фактором могут служить и биотические отношения, например занятость данной территории более сильным конкурентом, либо недостаток опылителей для растений.
Закон толерантности В.Шелфорда.Любой организм в природе способен переносить воздействие периодических факторов как в сторону уменшения, так и в сторону их увеличение до определенного предела в течение определенного времени. На основе этой способности живых организмов американский зоолог В. Шелфорд в 1913 году сформулировал закон толерантности (от лат «tolerantica»-терпение: способность организма переносить вляние факторов среды обитания до определенного предела), который гласит “Отсутствие или невозможность развития экосистемы определяется не только недостатом (количественно или качественно), но и избытком любого из факторов (света, тепла, воды), уровень которых может оказаться близким к пределам переносимого данным организмым”. Эти два предела: экологический минимум и эклогический максимум, воздействие которых выдерживает живой организм, называются пределами толерантности (терпимости), например, если некий организм способен жить при температуре от 30°С до - 30°С, то предел его толерантности лежит в пределах этих температур.
Эвробионты, благодаря широкой толерантности, или широкой экологической амплитуде, широко распространены, более устойчивы к воздействию факторов среды, т е. более жизнестойки. Отклонения воздействия факторов от оптимума угнетает живой организм. Экологичесая валентность у одних организмов узкая (например, снежный барс, грецкий орех, в пределах умеренной зоны), у других-широкая (например, волк, лиса, заяц, тростник, одуванчик и др.).
После открытия этого закона были проведены многочисленные исследования, благодаря которым стали известны пределы существования для многих растений и животных. Таким примером является влияние загрязняющего атмосферный воздух вещества на организм человека. При значениях концентрации Слет человек погибает, но необратимые изменения в его организме происходят при значительно меньших концентрациях: Слим. Следовательно, истинный диапазон толерантности определяется именно этими показателями. Значит, их необходимо экспериментально определять для каждого загрязняющего или любого вредного химического соединения, и не допускать превышения его содержания в конкретной среде. В санитарной охране окружающей среды важны не нижние пределы устойчивости к вредным веществам, а верхние пределы, т.к. загрязнение окружающей среды – это и есть превышение устойчивости организма. Ставится задача или условие: фактическая концентрация загрязняющего вещества Сфакт не должна превышать Слим. Сфакт< Слим. С¢лим является предельно допустимой концентрации СПДК или ПДК.
Взаимодействие факторов.Оптимальная зона и пределы выносливости организмов по отношению к какому-либо фактору среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одно временно другие факторы. Например, жару легче переносить в сухом, но не во влажном воздухе. Угроза замерзания значительно выше при морозе с сильным ветром, чем в безветренную погоду. Таким образом, один и тот, же фактор в сочетании с другими оказывает неодинаковое экологическое воздействие. Создается эффект частичного взаимозамещения факторов. Например, увядание растений можно приостановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение.
Однако взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Крайний дефицит тепла в полярных пустынях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью.
Группы живых организмов по отношению к факторам среды:
Свет или солнечная радиация. Всем живым организмам для осуществления процессов жизнедеятельности необходима энергия, поступающая извне. Основным источником ее является солнечная радиация, на которую приходится около 99,9% в общем балансе энергии Земли. Альбедо – доля отраженного света.
Важнейшие процессы, протекающие у растений и животных с участием света:
Фотосинтез. В среднем 1-5% падающего на растения света используется для фотосинтеза. Фотосинтез – источник энергии для всей остальной пищевой цепи. Свет необходим для синтеза хлорофилла. С этим связаны все адаптации растений по отношению к свету – листовая мозаика (рис. 7), распределение водорослей в водных сообществах по слоям воды и т.д.
По требованию к условиям освещения принято делить растения на следующие экологические группы:
Светолюбивые или гелиофиты – растения открытых, постоянно хорошо освещаемых местообитаний. Их световые адаптации заключаются в следующем – мелкие листья, часто рассеченные, в полдень могут повернуться ребром к солнцу; листья толще, могут быть покрыты кутикулой или восковым налетом; клетки эпидермиса и мезофилла мельче, палисадная паренхима многослойная; междоузлия короткие и т.д.
1 – ветвь вяза, розетки листьев: 2 – герани, 3 – камнеломки, 4 - колокольчика | Рисунок 8 – Ели, выросшие на открытом месте (1) и в плотном лесном массиве (2) |
Рисунок 7 – Листовая мозаика |
Тенелюбивые или сциофиты – растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами. Могут фотосинтезировать даже при очень низкой освещенности; листья темно-зеленые, крупные и тонкие; палисадная паренхима однослойная и представлена более крупными клетками; ярко выражена листовая мозаика.
Теневыносливые или факультативные гелиофиты – могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения. К этой группе относятся лесные и луговые травы, кустарники. Адаптации формируются в зависимости от условий освещения и могут перестраиваться при изменении светового режима (рис. 8). Примером могут служить хвойные деревья, которые выросли на открытых пространствах и под пологом леса.
Среди животных различают ночные и сумеречные виды. Имеются также виды, живущие в постоянной темноте и не выносящие яркого солнечного света (почвенные организмы, обитатели пещер и больших глубин.Внутренние паразиты животных и растений).
Транспирация - процесс испарения воды листьями растений для снижения температуры. Примерно 75 % падающей на растения солнечной радиации расходуется на испарение воды и таким образом усиливает транспирацию; это важно в связи с проблемой сохранения воды.
Фотопериодизм. Важен для синхронизации жизнедеятельности и поведения растений и животных (особенно их размножения) с временами года. Фототропизм и фотонастии у растений важны для обеспечения растениям достаточной освещенности. Фототаксис у животных и одноклеточных растений, необходим для нахождения подходящего местообитания.
Зрение у животных. Одна из главнейших сенсорных функций. Понятие видимого света для различных животных различно. Гремучие змеи видят инфракрасную часть спектра; пчелы – ближе к ультрафиолетовой области. У животных, обитающих в местах, куда не проникает свет, глаза могут быть полностью или частично редуцированы. Животные, ведущие ночной или сумеречный образ жизни плохо различают цвета и видят все в черно-белом изображении; кроме того, у таких животных размер глаз часто гипертрофирован. Свет, как средство ориентации играет важную роль в жизни животных. Многие птицы во время перелетов ориентируются с помощи зрения по солнцу или звездам. Такой же способностью обладают некоторые насекомые, например, пчелы.
Прочие процессы. Синтез витамина Д у человека. Однако, длительное воздействие ультрафиолетовых лучей может вызывать повреждение тканей, особенно у животных; в связи с этим выработались защитные приспособления – пигментация, поведенческие реакции избегания и т.п. Определенное сигнальное значение у животных играет биолюминесценция, то есть способность светиться. Световые сигналы, испускаемые рыбами, моллюсками, другими водными организмами, служат при привлечения добычи, особей противоположного пола.
Температура. Тепловой режим – важнейшее условие существования живых организмов. Главным источником тепла является солнечное излучение.
Границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0 до +50оС. Однако, целый ряд организмов обладает специализированными ферментными системами и приспособлены к активному существованию при температуре тела, выходящей за указанные пределы (табл. 5). Самая низкая при которой найдены живые существа -200°С, а самая высокая до +100 °С.
Таблица 5 - Температурные показатели различных сред жизни (0С)
Среда жизни | Максимум | Минимум | Амплитуда |
Суша | 55,0 | -70,0 | 125,0 |
Моря | 35,6 | -3,3 | 38,9 |
Пресные воды | 93,0 | 0,0 | 93,0 |
По отношению к температуре все организмы подразделяются на 2 группы: холодолюбивые и теплолюбивые.
Холодолюбивые (криофилы) способны жить в условиях относительно низких температур. При температуре -8°С живут бактерии, грибы, моллюски, черви, членистоногие и др. Из растений: древесные в Якутии выдерживают температуру -70°С. В Антарктиде при такой же температуре обитают лишайники, отдельные виды водорослей, пингвины. В лабораторных условиях семена, споры некоторых растений, нематоды переносят температуру абсолютного нуля -273,16°С. Приостановка всех жизненных процессов называется анабиозом.
Теплолюбивые организмы (термофилы) – обитатели жарких районов Земли. Это – беспозвоночные (насекомые, паукообразные, моллюски, черви), растения. Многие виды организмов способны переносить очень высокие температуры. Например, пресмыкающиеся, жуки, бабочки выдерживают температуру до +45-50°С. На Камчатке живут сине-зеленые водоросли при температуре +75-80°С, верблюжья колючка переносит температуру +70°С.
Беспозвоночные, рыбы, пресмыкающиеся, земноводные лишены способности поддерживать постоянную температуру тела в узких границах. Их называют пойкилотермными или хладнокровными. Они зависят от уровня тепла, поступающего извне.
Птицы и млекопитающие способны поддерживать постоянную температуру тела независимо от окружающей температуры. Это – гомойотермные, или теплокровные организмы. Они не зависят от внешних источников тепла. Благодаря высокой интенсивности обмена веществ у них вырабатывается достаточное количество тепла, которое может сохраняться.
Температурные адаптации организмов: Химическая терморегуляция - активное увеличение теплопродукции в ответ на понижение температуры; физическая терморегуляция- изменение уровня теплоотдачи, способность удерживать тепло или наоборот рассеивать тепло. Волосяной покров, распределение жировых запасов, размер тела, строение органов и т.п.
Поведенческие реакции – перемещение в пространстве позволяет избегать неблагоприятных температур, спячка, оцепенение, сбивание в кучу, миграции, рытье нор и т.д.
Влажность.Вода – важный экологический фактор. Все биохимические реакции протекают в присутствии воды.
Содержание воды в клетках растений и животных в период активной жизнедеятельности довольно высоки (табл. 6).
Таблица 6 –Содержание воды в различных организмах (% от массы тела)
Растения | Содержание воды, % | Животные | Содержание воды, % |
Водоросли | 96-98 | Губки | |
Корни моркови | 87-91 | Моллюски | 80-92 |
Листья многолетних трав | 83-86 | Насекомые | 46-92 |
Листья деревьев | 79-82 | Ланцетник | |
Клубни картофеля | 74-80 | Земноводные | До 93 |
Стволы деревьев | 40-55 | Млекопитающие | 68-83 |
Дата добавления: 2016-01-03; просмотров: 61310;