Абсолютное и относительное изменение уровней ряда

Система уровней ряда аналогична системе дискретных статистиче­ских величин X. По-прежнему вычисляются абсолютное, относительное изменения, среднее значение, а также соответствующие индексы и тем­пы изменения по единичным и средним значениям. Используются те же формулы средних величин от простой арифметической до геометриче­ской.

Любое изменение уровней ряда определяется базисным и цепным способами.

Базисное абсолютное изменение представляет собой разность кон­кретного и первого уровней ряда, определяясь по формуле

(1.43)

Цепное абсолютное изменение представляет собой разность кон­кретного и предыдущего уровней ряда, определяясь по формуле

(1.44)

По знаку абсолютного изменения делается вывод о характере разви­тия явления: при > 0 — рост,при < 0 — спад,при = 0 — стабильность.

Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. То есть

(1.45)

где к = n-1 — количество изменений уровней ряда (r = 1 ...к).

Базисное относительное изменение представляет собой соотноше­ние конкретного и первого уровней ряда, определяясь по формуле

(1.46)

Цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле

(1.47)

Относительные изменения уровней — это по существу индексы ди­намики, критериальным значением которых служит 1. Если они больше ее, имеет место ростявления, меньше ее — спад,а при равенстве еди­нице наблюдается стабильностьявления.

Вычитая единицу из относительных изменений, получают темп из­менения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место ростявления, при отри­цательном — спад,а при нулевом темпе изменения наблюдается ста­бильностьявления.

Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному.

То есть

(1.48)








Дата добавления: 2015-12-26; просмотров: 1807;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.