Средний уровень ряда и средние изменения

Способ расчета среднего уровня зависит от того, моментный ряд или интервальный. При моментном ряде применяется формула средней хро­нологической величины (1.17), но при соответствующих обозначениях имеющая вид

= , (1.49)

где Y1 и Yn — первый и последний уровни ряда; Yi — промежуточ­ные уровни.

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины как

= (1.50)

Среднее изменение уровней ряда определяется также базисным и цепным способами.

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Б = (1.51)

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений наколичество изменений.

То есть Ц = (1.52)

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений со­гласно формуле (1.45) следует, что базисное и цепное среднее измене­ние должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Базисное среднее относительное изменение определяется по формуле

Б= = (1.53)

Цепное среднее относительное изменение определяется по формуле

Ц= (1.54)

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значени­ем 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность.

Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.








Дата добавления: 2015-12-26; просмотров: 873;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.