Предел функции в точке
Предел функции. Производная
Понятие функции
Пусть задано множество изменения переменной величины x. Если каждому значению величины соответствует одно определённое значение величины y, то говорят, что на множестве D задана функция , т.е. величина y есть функция величины x.
Величина x называется аргументом функции у, множество D – областью определения функции. Так как значение величины можно брать произвольно, а значение величины у зависит от выбранного значения х, то х называется независимой переменной, а у – зависимой переменной. Множество значений, принимаемых функцией у, называется областью значений функции.
Графиком функции называется множество всех точек плоскости, абсциссы которых являются значениями независимой переменной, а ординаты – соответствующими значениями функции.
Значение функции при называется частным значением функции в точке и обозначается .
Пример 1. Вычислить значение функции при .
Решение. Частное значение данной функции в точке равно .
Пример 2. Найти область определения функции .
Решение. Так как , т.е. , то .
Пример 3. Найти область определения функции .
Решение. Выражение под знаком корня квадратного должно быть неотрицательным, т.е. . Решим это неравенство методом интервалов: ,
● -2 |
● |
х |
− |
− |
+ |
Таким образом, .
Пример 4. Найти область определения функции .
Решение. Для данной функции т.е. и . Поэтому .
Пусть функция определена на множестве , а функция – на множестве , причём все значения функции . Тогда переменная у является функцией от х: . В этом случае у называется сложной функцией, а переменная u – промежуточным аргументом. Например, и . Тогда является сложной функцией.
Предел функции в точке
Число А называется пределом функции при , если для всех значений х, достаточно близких к , соответствующие значения функции как угодно мало отличаются от числа А. Записывается это следующим образом:
или при .
В определении предела может быть любым конечным числом или же обозначать и .
При вычислении пределов пользуются следующими правилами:
1) предел постоянной величины равен самой величине, т.е.
;
2) предел алгебраической суммы конечного числа функций равен алгебраической сумме пределов этих функций при условии, что пределы существуют, т.е. для двух функций справедливо равенство
;
3) предел произведения конечного числа функций равен произведению их пределов при условии, что эти пределы существуют, т.е. для двух функций справедливо равенство
;
4) если n – натуральное число, то
;
5) постоянный множитель можно выносить за знак предела, т.е.
;
6) предел отношения двух функций равен отношению их пределов, если последние существуют и предел знаменателя отличен от нуля, т.е.
, если .
При вычислении пределов функции иногда приходится пользоваться понятием односторонних пределов. Пусть функция определена на множестве и пусть . Будем рассматривать такие значения х, что . Это означает, что , оставаясь всё время слева от . Если при этом существует предел функции при , то он называется левым пределом этой функции в точке или при и обозначается .
Пусть теперь , оставаясь всё время справа от , т.е. оставаясь больше . Если при этом существует предел функции то он называется правым пределом этой функции в точке или при и обозначается .
Левый и правый пределы называются односторонними пределами функции в точке. Если односторонние пределы функции в точке существуют и равны между собой, то функция имеет тот же предел в этой точке: .
Если односторонние пределы функции в точке существуют, но не равны между собой, то предел функции в этой точке не существует.
Пример 5. Найти предел функции в точке x=6.
Решение. Найдём односторонние пределы функции в данной точке. Если , то и Если x>6, то и Так как односторонние пределы в точке x=6 равны между собой, то предел функции в этой точке существует и равен 9.
Дата добавления: 2015-12-10; просмотров: 930;