Основні типи вимірювань у педагогічних дослідженнях.
У широкому розумінні вимірювання – це приписування (при-своєння) чисел об’єктом відповідно певних правил. Ці правила мають встановлювати відповідність між властивостями педагогічних об’єктів і деякими властивостями чисел. Кожне таке правило спричинює тип вимірювання – свою шкалу вимірювання. Існує чотири основні види шкал вимірювання: шкала найменувань; порядкова (рангова) шкала; інтервальна шкала; шкала відношень. Вимірювання за допомогою шкали найменувань і порядкової (рангової) шкали вважаються якіс-ними, а при використанні інтервальної шкали чи шкали відношень – кількісними.
Розглянемо кожну із зазначених шкал.
Шкала найменувань. Не дивлячись на те, що її часто називають «слабкою», «примітивною», вимірювання за цією шкалою можуть використовуватися для перевірки статистичних гіпотез, вирахування показників кореляції якісних ознак тощо. Побудова шкали досить проста: встановлюється критерій, який дозволяє розподілити дослі-джувані об’єкти на декілька класів, причому, кожний об’єкт має по-трапити лише в один клас. Об’єктам, які потрапили в один і той самий клас, приписується якесь число. Об’єктам другого класу приписується інше число. Виконується умова: якщо декільком об’єктам приписано одне й те саме число, то ці об’єкти рівні за станом величини, що вимірюється. І навпаки, вони різні, якщо їм приписано різні числа.
Приклад. У студентській групі (25 осіб) 1-го курсу було проведено дослідження щодо умінь студентів працювати на комп’ютері. Крім того, ставилося завдання: виявити, чи є різниця між сільськими та міськими дітьми у їх підготовленості щодо роботи на комп’ютері.
У наведеному прикладі студентів можна розподілити за двома ознаками: випускник міської чи сільської загальноосвітньої школи і вміння роботи на комп’ютері. У стані кожної ознаки виділяємо по дві градації: випускник міської загальноосвітньої школи; випускник сільсь-кої загальноосвітньої школи; першокурсник уміє працювати на ком-п’ютері (на рівні користувача); першокурсник не вміє працювати на комп’ютері (на рівні користувача).
Із урахуванням зазначених градацій студентська група розподі-ляється на чотири класи: випускники міської загальноосвітньої школи, які вміють працювати на комп’ютері на рівні користувача; випуск-ники міської загальноосвітньої школи, які не вміють працювати на комп’ютері; випускники сільської загальноосвітньої школи, які вміють працювати на комп’ютері на рівні користувача; випускники сільської загальноосвітньої школи, які не вміють працювати на комп’ютері.
Далі об’єктам першого класу присвоїмо, наприклад, число 1; об’єктам другого, третього і четвертого класів, відповідно, числа 2, 3 і 4. Ці числа, фактично, є ярликами, – їх можна замінити будь-якими символами, тому якісна обробка експериментальних даних проводиться не з самими числами, а з їх кількісними показниками.
Порядкова (рангова) шкала. У педагогічних експериментах дос-лідникам часто треба вимірювати рівень навченості студентів, пізна-вальних інтересів, сформованості якихось якостей, встановлювати між об’єктами відношення переваг чи рівності. Для цього слід мати критерій, який дозволяє розташувати студентів за ступенем збільшення (зменшення) властивості, що вимірюється. Природно, такі операції проводяться у тому випадку, коли неможливо визначити на скільки рівних одиниць за станом ознаки один об’єкт відрізняється від другого.
Приклад.
Згідно з програмою дослідження визначено такі завдання екс-периментальної роботи:
· сформувати експериментальні й контрольні групи як випадкові і незалежні вибіркові підмножини;
· запровадити методику активізації навчання на експеримен-тальному масиві студентів при вивченні предметів з механізації сіль-ськогосподарського виробництва.
Експериментальні й контрольні групи визначалися методом попарного відбору. Зокрема, за ознакою «успішність» дещо нижчим виявився середній бал за результатами попередніх сесій у рупах М-47; М-46; (Ніжинський агротехнічний інститут) та групах М-941 та М-943 (Таращанський агротехнічний коледж). У перетворюючому експери-менті ці групи були експериментальними.
За критерій було обрано параметр «рівень оволодіння студентами професійними знаннями, уміннями і навичками». Відповідно характе-ристичним ознакам рівнів сформованості професійних знань, умінь і навичок було розроблено три типи контрольних завдань. Перший рівень (репродуктивний) – цей рівень свідчить про те, що студенти оволоділи фактичним матеріалом: вони повинні із декількох схожих явищ визначати необхідні. Рівень вважався засвоєним, якщо студент міг набрати 70% можливих за тестом балів. При цьому виставлялися такі оцінки (за В. Безпальком): якщо коефіцієнт засвоєння (відношення кількості набраних балів до можливих за тестом) від 0 до 0,69 – незадовільно; від 0,70 до 0,80 – задовільно; від 0,90 – добре; від 0,91 до 1 – відмінно.
Другий рівень (репродуктивно-продуктивний) відповідає такому ступеню оволодіння взаємопов’язаними знаннями, коли студенти не тільки репродукують зміст навчального матеріалу, а й демонструють логічний і послідовний виклад знань, вміння розкривати причинно-наслідкові зв’язки, пізнавальні уміння й навички. Для оцінки оволо-діння цим рівнем підготовки використовували тестові завдання «на відповідність», які дозволяють виявити у студентів не тільки наявність знань, а й умінь їх застосовувати для визначення логічних зв’язків між об’єктами техніки та їх функціями.
Другий рівень вважався засвоєним, якщо . Оцінки виставлялися відповідно до наведеної вище методики.
Третій рівень (продуктивний) передбачає системність, обгрун-тованість знань, уміння ефективного застосування знань на практиці. Досягнення цього рівня засвідчує грунтовні вміння студентів встанов-лювати причинно-наслідкові зв’язки, володіння способами вирішення проблем, трансформування з одних предметних галузей в інші. Для оцінки оволодіння студентами продуктивним рівнем знань їм пропо-нувався набір виробничо-технологічних операцій.
Таким чином, можна констатувати, що вибірки студентів випад-кові й незалежні, а властивість, що вимірюється (сформованість про-фесійних знань, умінь і навичок) має неперервний розподіл і може бути виміряна за порядковою (ранговою) шкалою.
Аналіз результатів перетворюючого експерименту підтвердив якісні зміни у навчальних досягненнях студентів, на які впливали варіативні чинники активізації навчання. Врахування в системі цілеспрямованого формування активності пізнавальних можливостей студентів суттєво підвищувало кількість студентів, які оперували ре-продуктивно-продуктивним і продуктивним рівнями знань, що набували творчого характеру. Зіставлення показників табл. 8.6 свідчить про ефективність підготовки молодших спеціалістів з механізації сільського господарства за означеною системою активізації навчання.
Таблиця 8.6
Розподіл студентів експериментальних і контрольних груп за рівнями володіння професійними знаннями, уміннями й навичками (%)
Заміри | Групи | Володіння професійними знаннями, уміннями і навичками | ||
Репродук-тивний | Репродуктивно-продуктивний | Продук- тивний | ||
1. | Контрольні Експериментальні | 31,5 29,0 | 14,7 12,0 | |
2. | Контрольні Експериментальні | 45,4 22,0 | 37,8 40,0 | 16,8 38,0 |
3. | Контрольні Експериментальні | 46,4 13,0 | 32,6 38,0 | 21,0 49,0 |
Приріст | Контрольні Експериментальні | -7,4 -46 | + 1,1 + 9,0 | + 6,3 + 37,0 |
Уже при проміжних замірах зафіксовано париріст студентів у експериментальних групах, у яких рівень володіння професійними знаннями, уміннями й навичками було визначено як продуктивний: у порівнянні з початковим станом частка цих студентів зросла на 26%. У контрольних групах зріст незначний – 4,1%. На закінчення експе-рименту в експериментальних групах на репродуктивному рівні виявилося 13,8% студентів, на репродуктивно-продуктивному – 38,0%, на продуктивному – 49,0% відповідно. У контрольних групах змен-шилася частка студентів, активність яких була оцінена як репродук-тивна – з 53,8% до 46,4%. Деякі зміни відбулися на двох інших рівнях: на репродуктивно-продуктивному рівні приріст склав + 1,1%, на продуктивному – + 6,3%. Наведені результати свідчать про те, що застосування у навчально-виховному процесі розроблених підходів до активізації навчання забезпечує високий рівень знань, умінь і навичок, позитивно-дієве ставлення до навчання, розвиває інтерес до вивчення спеціальних дисциплін.
На завершення додамо, що особливістю порядкової (рангової) шкали є те, що вона має серйозне обмеження: з числами (балами, рангами) не можна виконувати арифметичних дій: вираховувати суми, знаходити середні значення, показники варіативності тощо.
Інтервальна шкала. Інтервальна шкала – це шкала рівних одиниць. Таку шкалу можна отримати, якщо за допомогою критерію встановлено (виміряно) інтервал між об’єктами: на скільки одиниць один об’єкт відрізняється (більший чи менший) від іншого. Природно, при використанні інтервальної шкали є можливість проводити ариф-метичні дії між числами, які приписуються об’єктом. Особливістю цього виду шкалування є те, що початок відліку вибирається довільно: відсутність початку відліку (нульової точки) не дозволяє визначити, у скільки разів один об’єкт більший за інший. У даному випадку доцільно згадати шкалу Цельсія для вимірювання температури: покази термо-метра при 30° не означають вдвічі більшу температуру у порівнянні з показниками при 15°!
Щодо педагогічних досліджень, то тут доцільно вказати на таке. Якщо ми вимірюємо у студентів сформованість знань, умінь і навичок, то відсутність правильних відповідей, правильно розв’язаних завдань не означає, що студент зовсім не володіє інформацією у даній галузі. Чи, скажімо, при діагностиці пізнавальних здібностей засобами тесту-вання не можна констатувати повну відсутність пам’яті, мислительних умінь у респондента, який за результатами виконання тесту не отримав жодного балу.
Наприкінець наведемо думку М.І. Грабаря щодо використання цього виду шкал педагогами-дослідниками: «На відміну від природ-ничих наук в соціальних науках (зокрема і в педагогіці)... нині немає вимірювальних шкал інтервального типу».
Шкала відношень. Будь-яка інтервальна шкала перетворюється у шкалу відношень, якщо чітко фіксувати початок відліку. Фактично, фіксований нуль дає можливість визнати, на скільки одиниць один об’єкт відрізняється від іншого і у скільки разів. Тому її часто нази-вають «метричною» або «абсолютною». Прикладами таких шкал є шкали довжини, ваги, об’єму тощо. У шкалі відношень можна засто-совувати усі арифметичні операції до результатів вимірювань. На сильні позиції цієї шкали влучно вказує А.Т. Ашеров: «Усі креслення і всі книги виконуються за цією шкалою. У ній ми шиємо, отримуємо заробітну плату, купуємо, сплачуємо за проїзд, одним словом – живемо. І відразу відчуваємо дискомфорт, коли змінюється точка відліку (нуль) у шкалі: погано розуміємо температуру за Фаренгейтом; вагу в унціях (28, 35 г); футах (16 унцій, 453,592 г), гранах (64,8 мг), каратах (200 мг); об’єм в пінтах (568,24 мл), галонах (4,546 л), барелях (42 галлона, 159 л)...»
Отже, очевидним є те, що перехід від однієї шкали вимірювання до іншої, починаючи зі шкали найменувань, супроводжується розши-ренням переліку допустимих для отриманих результатів вимірювань математичних операцій. У цьому контексті шкала відношень (мет-рична) є найбільш придатною, оскільки без серйозного застосування математичного апарату глибоко вивчити педагогічні явища неможливо.
Кореляція
Зв’язок (залежність) між двома і більше змінними у статистиці називають кореляцією. Якщо, наприклад, якісь дві характеристики, отримані для одного й того ж об’єкта, мають тенденцію сумісно змі-нюватися так, що з’являється можливість завбачити величину однієї з них по значенню іншої, говорять, що ці характеристики корелюють одна з іншою. У книзі «Як правильно користуватися статистикою» американський психолог Грегорі А. Кімбл наголошує, що є кореляція між середніми показниками IQ (коефіцієнт розумового розвитку) батьків і середньою величиною цього ж показника у їхніх дітей.
Г.В. Осипов у монографії «Робоча книга соціолога» наводить переконливі дані про тісний зв’язок величини заробітної плати і загального стажу роботи працівників. Не викликає сумніву тісний зв’язок між такими двома змінними, як вага людини і її зріст тощо.
Ступінь (тіснота) зв’язку між характеристиками, зокрема і в наведених прикладах, залежить від величини коефіцієнта кореляції взаємозв’язку. Коєфіцієнт кореляції – це число, знак і величина, які характеризують напрямок і силу взаємозв’язку.
Розрізняють багато типів коефіцієнтів кореляції. Їх вибір залежить від видів шкал вимірювання змінних, залежність між якими має бути оцінена. Найчастіше у психолого-педагогічних дослідженнях викорис-товують коефіцієнти кореляції Пірсона і Спірмена. Значення коефіцієнта кореляції можуть змінюватися в межах від –1 до +1, включаючи значення 0. Знак коефіцієнта кореляції вказує на напрям (прямий чи обернений) взаємозв’язку між двома змінними. Абсолютне значення коефіцієнта (без врахування знаку) характеризує силу (тісноту) взаємо-зв’язку, що розглядається. При значенні коефіцієнта плюс або мінус 1 говорять про наяівність суворої функціональної взаємозалежності. Значення коефіцієнта кореляції 0 вказує на відсутність будь-якого взаємозв’язку між змінними, що розглядаються. Але у практиці такі ідеальні значення не зустрічаються: переважно, значення коефіцієнта кореляції знаходяться в середині означеного вище інтервалу.
Розглянемо приклади визначення коефіцієнта кореляції при використанні різних видів вимірювання.
Приклад1. Дві змінні, що порівнюються: (досвід роботи за фахом до вступу у ВНЗ) і (успішність оволодіння спеціальними дисциплінами) вимірюються в дихотомічній шкалі (підвид шкали найменувань). Для визначення їх взаємозв’язку використаємо коефі-цієнт кореляції Пірсона. Для зручності обрахувань слід скористатися спеціальною таблицею «сполучення» (табл. 8.7).
Таблиця 8.7
Загальна таблиця «сполучення»
Ознака | Всього | ||
О | |||
Ознака | |||
Разом |
де – кількість випадків, коли змінні = 0, = 1;
– кількість випадків, коли змінні = = 1;
– кількість випадків, коли = = 0;
– кількість випадків, коли змінна = 1, і одночасно змінна = 0.
Для дихотомічних даних формула коефіцієнта кореляції Пірсона має вигляд:
(8)
Запишемо дані нашого прикладу у вигляді табл.8.8.
Таблиця 8.8
№ респондента | Змінна | Змінна |
Дані таблиці 8 внесемо у таблицю 7. Тоді загальна таблиця «сполучення» буде мати такий вигляд:
Таблиця 8.9
Таблиця «сполучення» для даних таблиці 7
Ознака | Всього | |||
О | ||||
Ознака | ||||
Разом | ||||
Підставимо у формулу 8 дані таблиці 8.9:
Таким чином, коефіцієнт кореляції Пірсона дорівнює 0,32, що говорить про незначний зв’язок між досвідом роботи студентів за фахом до вступу у ВНЗ і їх успішністю в оволодінні спеціальними дисциплінами.
Приклад 2. Дві змінні, що порівнюються:
– самостійна підготовка до контрольної роботи, год.;
– результати тестування (успішність засвоєння модуля, бали).
Змінні вимірюються в інтервальній шкалі (дані умовні). Для по-легшення обрахувань складемо таблицю 8.10 та визначимо такі сумарні величини: , , , ,
Коефіцієнт кореляції Пірсона для наших умов визначається за формулою:
(9)
Підставимо у формулу (9) дані таблиці 10:
.
Таким чином, величина зв’язку між втраченим часом студента на самостійну підготовку до модульного контролю та успішністю засво-єння модулю (результати тестування) достатньо велика й засвідчує позитивний зв’язок між змінними.
Таблиця 8.10
Дата добавления: 2015-11-06; просмотров: 3174;