Рівняння пресування по Куніну і Юрченко
Серед рівнянь пресування, виведених різними авторами, багато одержаниі емпірично, тобто шляхом математичної обробки експериментальних даних. В цьому відношенні є типовим рівняння по Н. Ф. Куніну і В. Д. Юрченко.
Своє рівняння пресування автори одержали математичною обробкою експериментальних даних, отриманих при ущільненні пластичних і крихких порошків ( , графіту, селітри, кам'яної солі і ін.). Побудовані залежності показали, що для всіх досліджуваних матеріалів при збільшенні тиску пресування р об'єм матеріалу, що ущільнювався , зменшується, а щільність збільшується. У вузькому інтервалі тиску збільшення щільності пропорційне початковій щільності і приросту тиску :
, (2.117)
де – збільшення густини при прирості тиску на величину ;
– множник пропорційності, , який показує відносну зміну щільності на одиницю тиску;
– насипна щільність.
Оскільки, , то автори пропонують ввести поняття коефіцієнта пропорційності, або коефіцієнта пресування:
(2.118)
і використовувати його надалі при висновку рівняння пресування.
Побудовані на підставі експериментальних даних залежності і від тиску пресування мають однаковий вигляд для всіх ущільнюваних матеріалів (рис.31).
а б в
Рисунок 31 – Залежність коефіцієнта пресування і від тиску пресування
Проводячи аналіз одержаних залежностей, можна дійти висновку, що весь процес ущільнення можна розбити на три стадії (області) пресування. У кожній з них протікають процеси, відмінні один від одного (рис.31, в).
На першій стадії пресування (ділянка I, рис. 31) відбувається зближення і ущільнення частинок без їх деформації – ділянка підпресовування. На другій стадії (ділянка II) відбуваються пластична і крихка деформації частинок, взаємне їх обтікання, заповнення міжкристалітних проміжків і утворення компактного тіла.
На третій стадії (ділянка III ) відбувається об'ємне стиснення компактного тіла, що утворилося. При переході від першої області ущільнення до другої і третьої зменшується коефіцієнт пресування, тобто швидкість ущільнення матеріалу.
Для практики найважливіше значення має друга область, де відбувається основне формування властивостей пресовок.
Як видно з рисунку 31, а, залежність від визначається деякою функцією, яка для другої області має експоненціальний хід. Підтвердженням цього є залежність від (рис.31, б), яка в інтервалі практичного тиску виражається прямими лініями, тобто
, (2.119)
або
, (2.120)
або після потенціювання
(2.121)
де ( – кут нахилу прямих на рисунку 31, б до осі абсцис);
, тобто значення отримуємо при перетині прямих на рисунку 31, б з віссю ординат.
Якщо узяти елементарну ділянку на прямій (рис. 31, б), то можна записати
. (2.122)
Виходячи з цього можна сказати, що коефіцієнт характеризує відносне зменшення коефіцієнта пресування при зміні тиску на одиницю. Іншими словами, його можна назвати коефіцієнтом втрати стисливості. Для даного матеріалу за одних і тих же умов пресування він постійний.
З виразів (139) і (140), одержимо диференціальне рівняння пресування по Куніну і Юрченко:
. (2.123)
Або, інтегруючи його:
(2.124)
Приймаючи, що , одержуємо
або .
Або після інтегрування:
. (2.125)
Якщо прийняти, що рівняння (147) справедливе до нескінченно великого тиску і щільності при цьому нескінченно великому тиску рівна (гранична щільність), то при і . Тоді рівняння (2.125) прийме вигляд:
. (2.126)
Рівняння (2.126) являє собою закон пластичного пресування порошкоподібних тіл в інтегральній формі. У нього входять три константи (параметра), які характеризують матеріал, який ущільнюється: – умовна гранична щільність; – початковий коефіцієнт пресування, г/(кг∙см); – коефіцієнт втрати стисливості, см2/кг.
Умовна гранична щільність чисельно рівна тій щільності, яка досягається при нескінченно великому тиску. Насправді рівняння (2.126) відображає процес пресування тільки в так званій "пластичній області", де ущільнення відбувається за рахунок пластичної і крихкої деформації частинок порошку. У зв'язку з цим екстраполяція на нескінченно великий тиск носить чисто умовний характер і це робиться для зручності визначення постійної в рівнянні (2.126) при інтегруванні диференціального рівняння.
Не дивлячись на те, що визначається екстраполяцією, вона достатньою мірою відображає властивості пресованого матеріалу в другій області.
Якби рівняння (2.126) було справедливе до нескінченно великого тиску, то повинна б дорівнювати густині монокристала. Насправді ж вона виявляється дещо вищою.
При розрахунках процесу пресування необхідно знати значення і . Один з шляхів їх визначення – складання системи трьох рівнянь з трьома невідомими. Для цього визначається густина пресовок при трьох тисках. Рішення цих рівнянь дає шукані величини. У зв'язку з тим, що рівняння типу (2.126) дещо складні для сумісного вирішення, зручніше користуватися графічним способом.
Для цього на підставі експериментальних даних будується графік в координатах (рис.31, б) і з нього визначається коефіцієнт втрати здатності до стискання:
.
Знаючи і визначають величину і будують графічну за\
]’
]ежість в координатах (рис. 32).
Рисунок 32 – До визначення постійних в рівнянні (148) |
Якщо тиск і щільність при випробуваннях відповідають області пластичного пресування, то всі крапки знаходитимуться на одній прямій. Продовження цієї прямої до перетину з віссю ординат дає значення .
Тангенс кута нахилу прямої до осі абсцис рівний відношенню . Знаючи , знаходимо .
Розглянуте рівняння Н. Ф. Куніна і В. Д. Юрченка описує з достатнім ступенем точності процес пресування тільки тих порошків, для яких воно було виведене, що є істотним недоліком.
Дата добавления: 2015-09-07; просмотров: 926;