Четвертое уравнение Максвелла
Четвертое уравнение Максвелла в интегральной форме совпадает с законом Гаусса для магнитного поля, который можно сформулировать следующим образом. Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю, т.е.
.
Это уравнение является четвертым уравнением Максвелла и называется также принципом непрерывности магнитного потока. В дифференциальной форме четвертое уравнение Максвелла получается, аналогично третьему, с помощью теоремы Остроградского-Гаусса:
,
тогда
,
а так как объем может быть любым, то это равенство может выполняться только при
.
Рисунок 33 − Линии вектора магнитной индукции
Физически смысл этого закона заключается в неразрывности магнитных силовых линий, что было установлено экспериментально. Из замкнутости силовых линий следует, что поток, «втекающий» в объем , в точности равен потоку, «вытекающему» из этого же объема. Иначе говоря, не существует линий вектора , которые только входят, или, наоборот, только выходят из поверхности : они всегда пронизывают ее.
Дата добавления: 2015-10-19; просмотров: 1035;