ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФИЛЬТРАЦИИ
Аналитическое и численное исследование задач связано с применением основных законов течения в дифференциальной форме. Для процессов, происходящих в нефте-газовых пластах, характерно изменение основных параметров течения во времени. Такие процессы называются неустановившимися (нестационарными). Для получения дифференциальных уравнений движения выделяется бесконечно-малый элемент и рассматриваются законы сохранения массы, количества движения и энергии за бесконечно малый промежуток времени. При этом используются экспериментальные соотношения, определяющие зависимость силы трения, пористости и т.д. от параметров течения. Число уравнений должно равняться числу неизвестных параметров, что даёт замкнутую систему.
Для подземной гидромеханики характерно изотермическое изменение параметров вследствие значительных величин удельной поверхности коллекторов и их теплоёмкости. Т.о. для таких процессов можно не рассматривать уравнение энергии и ограничиваться уравнениями балланса массы (неразрывности) и движения.
Уравнение энергии необходимо рассматривать в локальных областях призабойной зоны из-за значительных перепадов давления, проявления дроссельного эффекта, а также при применении тепловых методов повышения нефте-газоотдачи.
Для замыкания системы уравнений необходимо введение замыкающих соотношений, а именно уравнений состояния флюидов и пористой среды. Кроме того для получения однозначного решения необходимо задание граничных и начальных условий.
В большинстве случаев решение задач подземной гидродинамике требует использования численных методов и только в сильно идеализированных случаях одномерного течения удаётся получить аналитическое решение.
Дата добавления: 2015-10-13; просмотров: 646;