Границы применимости закона Дарси

 

Закон Дарси справедлив при соблюдении следующих условий:

a) пористая среда мелкозерниста и поровые каналы достаточно узки;

b) скорость фильтрации и градиент давления малы;

с) изменение скорости фильтрации и градиента давления малы.

При повышении скорости движения жидкости закон Дарси нарушается из-за увеличения потерь давления на эффекты, связанные с инерционными силами: образование вихрей, зон срыва потока с поверхности частиц, гидравлический удар о частицы и т.д. Это так называемая верхняя граница. Закон Дарси может нарушаться и при очень малых скоростях фильтрации в процессе начала движения жидкости из-за проявления неньютоновских реологических свойств жидкости и её взаимодействия с твёрдым скелетом пористой среды. Это нижняя граница.

Верхняя граница. Критерием верхней границы справедливости закона Дарси обычно служит сопоставление числа РейнольдсаRe=war/h с его критическим значением Reкр, после которого линейная связь между потерей напора и расходом нарушается. В выражении для числа Re: w-характерная скорость течения: а - характерный геометрический размер пористой среды; r - плотность жидкости. Имеется ряд представлений чисел Рейнольдса, полученных различными авторами при том или ином обосновании характерных параметров. Приведём некоторые из данных зависимостей наиболее употребляемые в подземной гидромеханике:

а) Павловского

1.30

Критическое число РейнольдсаReкр=7,5-9.

б) Щелкачёва

1.31

Критическое число Рейнольдса Reкр=1-12.

в) Миллионщикова

1.32

Критическое число Рейнольдса Reкр=0,022-0,29.

Скорость фильтрации uкр, при которой нарушается закон Дарси, называется критической скоростью фильтрации. Нарушение скорости фильтрации не означает перехода от ламинарного движения к турбулентному, а вызвано тем, что силы инерции, возникающие в жидкости за счёт извилистости каналов и изменения площади сечения, становятся при u>uкр соизмеримы с силами трения.

При обработке экспериментальных данных для определения критической скорости пользуются безразмерным параметром Дарси

, 1.33

представляющим отношение сил вязкого трения к силе давления. В области действия закона Дарси данный параметр равен 1 и уменьшается при превышении числа Re критического значения.

Нижняя граница. При очень малых скоростях с ростом градиента давления увеличение скорости фильтрации происходит более быстро, чем по закону Дарси. Данное явление объясняется тем, что при малых скоростях становится существенным силовое взаимодействие между твердым скелетом и жидкостью за счет образования аномальных, неньютоновских систем, н.п. устойчивые коллойдные растворы в виде студнеобразных плёнок, перекрывающих поры и разрушающихся при некотором градиенте давленияtн , называемого начальным и зависящим от доли глинистого материала и величины остаточной водонасыщенности. Имеется много реологических моделей неньютоновских жидкостей, наиболее простой их них является модель с предельным градиентом

1.34

1.3.1.4. Законы фильтрации при Re > Reкр

 

От точности используемого закона фильтрации зависит достоверность данных исследования скважин и определение параметров пласта. В связи сэтим в области нарушения действия закона Дарси необходимо введение более общих, нелинейных законов фильтрации. Данные законы разделяются на одночленные и двухчленные.

Одночленные законы описываются степенной зависимостью вида

1.35

где C, n - постоянные, 1£ n £ 2.

Данные зависимости не удобны, т.к. параметр nв общем случае зависит от скорости фильтрации. В связи с этим наибольшее употребление нашли двухчленые зависимости, дающие плавный переход от закона Дарси к квадратичному, называемому формулой Краснопольского

1.36

КоэффициентыА и Вопределяются либо экспериментально, либо теоретически. В последнем случае

1.37

где b - структурный коэффициент и по Минскому определяется выражением

1.38

 








Дата добавления: 2015-10-13; просмотров: 825;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.