Сочетаниями из элементов по ( ) называют такие их соединения, каждое из которых содержит ровно данных элементов, и которые отличаются хотя бы одним элементом.
Рассмотрим все допустимые сочетания элементов .
Делая в каждом из них возможных перестановок их элементов, очевидно, получим все размещения из элементов по :
.
Числа являются коэффициентами в формуле бинома Ньютона:
Свойства сочетаний:
1.
2.
3.
4.
5.
Свойства 1 и 2 очевидно следуют из определения , свойства 3 и 4 доказываются с помощью бинома Ньютона, полагая для свойства 3 что и , а для свойства 4 что и . Свойство 5 можно проверить следующим образом:
Это свойство позволяет последовательно вычислять биномиальные коэффициенты с помощью так называемого треугольника Паскаля:
Здесь каждое число, кроме крайних единиц, является суммой двух вышерасположенных.
Дата добавления: 2015-10-09; просмотров: 865;