Лекция 3. Числовые множества
Основные понятия:
Счетные множества; несчетные множества; числовые множества; ограниченным сверху (снизу) множества; верхняя (нижняя) грань множества; граничная точка множества; граница множества; комбинаторика; соединения; размещения; перестановки; сочетания; множество комплексных чисел; комплексное число; действительная часть комплексного числа; мнимая часть комплексного числа; число ; сложение комплексных чисел; умножение комплексных чисел; тригонометрическая форма комплексных чисел; абсолютная величина комплексного числа; аргумент комплексного числа; комплексно сопряженное число; формула Муавра.
Основные понятия
Будем рассматривать множества, элементами которых являются числа. Такие множества называются числовыми. Числовые множества задаются на оси действительных чисел R. На этой оси выбирают масштаб и указывают начало отсчета и направление. Наиболее распространенные числовые множества:
· ‑ множество натуральных чисел;
· ‑ множество целых чисел;
· – множество рациональных или дробных чисел;
· ‑ множество действительных чисел.
Множество всех рациональных чисел является счетным множеством. Счетным является множество всех точек плоскости (пространства) имеющих рациональные координаты.
Множество всех действительных чисел является несчетным: оно имеет мощность, называемую континуумом.
Некоторое непустое подмножество множества действительных чисел называют ограниченным сверху (снизу), если существует действительное число такое, что выполняется неравенство ( ).
Всякое число с указанным свойством называют верхней (нижней) гранью множества .
Непустое подмножество множества действительных чисел называется ограниченным, если оно ограничено и сверху и снизу.
В противоположность этому определению, множество называется неограниченным сверху (снизу), если какое бы число мы бы не предложили в качестве верхней (нижней) границы множества , всегда найдется элемент этого множества, который будет больше (меньше) .
Множество, неограниченное как сверху, так и снизу, называется неограниченным множеством.
Наименьшую из верхних граней непустого подмножества множества действительных чисел называют точной верхней гранью этого множества и обозначают sup . Наибольшую из нижних граней непустого подмножества множества действительных чисел называют точной нижней гранью этого множества и обозначают inf . Символы sup и inf являются сокращениями от supremum (самый верхний) и infimum (самый нижний).
Примем без доказательства утверждение о том, что всякое ограниченное сверху (снизу) множество имеет точную верхнюю (нижнюю) грань.
Граничной точкой множества называется точка, у которой в любом содержащем ее открытом промежутке найдутся как точки, принадлежащие множеству, так и точки, не принадлежащие множеству. Сама граничная точка может, как принадлежать множеству, так и не принадлежать ему.
Граница множества – совокупность граничных точек множества:
· (множество натуральных чисел) ограниченно снизу (например, числом ) и не ограничено сверху;
· (множество действительных чисел) неограничено;
· множество отрицательных чисел неограничено снизу и ограничено сверху.
Дата добавления: 2015-10-09; просмотров: 2416;