Общая формула Симпсона и ее остаточный член

Пусть n=2m есть четное число и - значения функции для равноотстоящих точек с шагом . Применяя формулу Симпсона к каждому удвоенному промежутку длины 2h, будем иметь .

Следовательно, .

Отсюда получаем общую формулу Симпсона:

.

Введя обозначения , формулу можно записать в более простом виде:

 

.

 

Если функция непрерывно дифференцируема до четвертого порядка, то ошибка формулы Симпсона на каждом удвоенном промежутке дается формулой:

, где .

Суммируя все эти ошибки, получим остаточный член общей формулы Симпсона в виде:

.

непрерывна на отрезке [a,b], поэтому найдется точка такая, что .

Следовательно

, (8.9)

где .

Если задана предельная допустимая погрешность , то, обозначив , будем иметь для определения шага h неравенство:

, отсюда , т.е. h имеет порядок . Говорят, что степень точности метода Симпсона равна четырем

Во многих случаях оценка погрешности квадратурной формулы весьма затруднительна. Тогда обычно применяют двойной пересчет с шагами h и 2h и считают, что совпадающие десятичные знаки принадлежат точному значению интеграла.

Предполагая, что на отрезке [a,b] производная меняется медленно, в силу формулы (8.9), получаем приближенное выражение для искомой ошибки

, где коэффициент M будем считать постоянным на промежутке интегрирования. Пусть и - приближенные значения интеграла , полученные по формуле Симпсона соответственно с шагом h и H=2h. Имеем: и . Отсюда

 

.

 

За приближенное значение интеграла целесообразно принять исправленное значение

 

.

 

Пример 8.2 Вычислить в Mathcad интеграл методом Симпсона для n=8. Оценить остаточный член.

 

 

 

Вычисляем для формулы Симпсона при n=4

 

 

 

Сделаем двойной пересчет при n=8

 

 

В качестве ответа возьмем

 

Остаточный член приблизительно равен

 

 

 

Это точный результат

 

 

Рис. 8.3. Решение примера 8.2 в Mathcad

 








Дата добавления: 2015-10-09; просмотров: 618;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.