Интерполяционная формула Ньютона №1
Пусть точки xi будут равноотстоящими. Дано: отрезок , , .
Тогда: , , - шаг интерполяции.
Требуется: подобрать полином , степени не выше n, принимаю-щий в точках значения или .
Ньютон находил решение в виде полинома ,
где .
Для практического использования удобно положить , тогда . …
Получим:
- первый многочлен Ньютона.
Полученную формулу выгодно использовать для интерполирования функции в окрестности начального значения x0, где q мало по абсолютной величине.
При n=1 получим формулу линейного интерполирования
Остаточный член первой интерполирующей формулы Ньютона имеет вид:
,
где - некоторая внутренняя точка наименьшего промежутка, содержащего все узлы и точку .
При наличии дополнительного узла на практике пользуются более удобной приближенной формулой:
.
Дата добавления: 2015-10-09; просмотров: 660;