Для каждой из следующих формул найдите вывод из пустого множества посылок.

3.27 x = y Й f(x, y) = f(y, x).

3.28 " x $ y (y = f(x)).

3.29 $ y (x = y & y = z) Й x = z.

3.30 $ x (x = a & P (x)) є P (a).

Теории первого порядка

Теория первого порядка сигнатуры s определяется с помощью аксиом. Интерпретация, при которой истинны все аксиомы теории первого порядка G, называется моделью G. Если теория первого порядка G выполнима, мы также говорим что она непротиворечива. Логические следствия теории первого порядка называется её теоремами. Доказательство предложения F в теории первого порядка G есть вывод F из подмножества аксиом из G.

Теоремы корректности и полноты выполняются для логик предикатов с функциональными символами и равенством и могут быть сформулированы в рамках теорий первого порядка следующим образом. В соответствие с теоремой корректности, если существует доказательство предложения F в теории первого порядка G, тогда F является теоремой G. В соответствие с теоремой полноты Гёделя, обратное также верно: для любой теоремы F теории первого порядка G, существует доказательство F в G. Однако, добавление правил вывода для кванторов второго порядка ведёт к формальной системе которая корректна, но не полна.

Арифметика первого порядка

Мы будем упрощать запись формул сигнатуры арифметики первого порядка (6) введением следующего обозначения: a будет записываться как 0, s(t) как t' , f(t1, t2) как t1+t2, и g(t1, t2) как t1 · t2. Аксиомы арифметики первого порядка являются универсальным замыканием следующих формул:

8. x' № 0.

9. x'= y'Й x = y.

10. (F(0) & " v (F(v) Й F(v'))) Й " v F(v) для любой формулы F(v).

11. x + 0 = x.

12. x + y'= (x + y)'.

13. x · 0 = 0.

14. x · y'= x · y + x.

Интерпретация (7) является моделью этой теории. Арифметика первого порядка имеет также другие модели, и некоторые из них совсем не похожи на систему натуральных чисел (задача 3.40).

В следующих формулах 1 обозначает терм 0', 2 – 0'', и 4 – 0''''. Через t1 Ј t2 мы обозначаем формулу $ v(t2 = t1 + v), где v – первая объектная переменная, которая не встречается в t1, t2.








Дата добавления: 2015-10-05; просмотров: 707;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.