В каждой из следующих задач найдите доказательство данной формулы в арифметике первого порядка.
3.34 2 № 4.
3.35 x' № x.
3.36 x'= x + 1.
3.37 x Ј x.
Нестандартные модели арифметики
Термы 0, 0', 0'', ... называются цифрами. Модель M арифметики первого порядка стандартна, если для каждого c О |M| существует цифра t такая, что tM = c.
3.38 Модель арифметики первого порядка (7) стандартна.
В соответствие с задачей 3.40, существуют модели арифметики первого порядка, которые не обладают этим свойством. Чтобы доказать существование такой модели, полезно рассмотреть следующую теорию первого порядка G. Сигнатура G получается из сигнатуры арифметики первого порядка добавлением буквы b в качестве новой объектной константы. Множество аксиом G получается из множества аксиом арифметики первого порядка добавлением формул b № 0, b № 0', b № 0'', ... в качестве новых аксиом.
3.39 G непротиворечива.
3.40 Арифметика первого порядка имеет нестандартную модель.
Существование нестандартных моделей арифметики следует из теоремы Сколема (1920), который обобщил раннюю работу Леопольда Лёвенхейма (1915). Возможность таких моделей резко контрастирует с результатом задачи 1.41. Разница связана с тем, что язык арифметики первого порядка является слишком ограниченным для выражения аксиомы индукции. ``Арифметика второго порядка'', в которой схема индукции заменяется по аксиоме (8), не имеет нестандартных моделей.
Теорема неполноты Гёделя
Пусть M – нестандартная модель арифметики первого порядка. Может случится что M ``не отличима'' от модели (7) в том смысле, что для любой замкнутой формулы F арифметики первого порядка F истинно при M тогда и только тогда, когда F истинно при (7). Но некоторые нестандартные модели не обладают этим свойством: может существовать предложение F такое, что при M предложение F истинно, а при (7) F истинно. Так как и M и интерпретация (7) являются моделями арифметики первого порядка, значит ни F, ни F не являются теоремами, а это означает, что арифметика первого порядка неполна. Этот факт, известный как теорема неполноты Гёделя, был доказан Куртом Гёделем в 1931 году.
[z1]„“„“
Дата добавления: 2015-10-05; просмотров: 1346;