Точки разрыва функции и их классификация. Рассмотрим некоторую функцию , непрерывную в окрестности точки , за исключением может быть самой этой точки
Рассмотрим некоторую функцию , непрерывную в окрестности точки , за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.
Заметим, что непрерывность функции может быть односторонней. Поясним это следующим образом.
Если односторонний предел функции в точке при справа существует и равен значению функции в этой точке, то функция называется непрерывной справа в точке . Обозначение: .
Если односторонний предел функции в точке при слева существует и равен значению функции в этой точке, то функция называется непрерывной слева в точке . Обозначение: ..
Определение. Точка называется точкой устранимого разрыва функции , если в этой точке функция имеет конечные, равные друг другу левый и правый пределы, не равные значению функции в точке :
.
При этом в самой точке функция может быть и не определена. Если доопрпеделить значение функции в точке положив его равным , то функция будет непрерывной в точке
Определение. Точка называется точкой разрыва 1- го рода функции , если в этой точке функция имеет конечные, но не равные друг другу левый и правый пределы:
.
Определение. Точка называется точкой разрыва 2 – го рода функции , если один из односторонних пределов функции в этой точке либо не существует либо равен бесконечности.
Пример. Функция Дирихле
не является непрерывной в любой точке .
Пример. Функция имеет в точке точку разрыва 2 – го рода, т.к.
.
Пример. .
Функция не определена в точке , но имеет в ней конечный предел , т.е. точка является точкой устранимого разрыва функции . Если доопределить функцию в точке :
то функция будет непрерывной на всей числовой оси. График этой функции:
Пример. = .
y
0 x
-1
Эта функция обозначается как – знак числа . В точке функция не определена. Так как левый и правый пределы функции различны, то -и точка разрыва 1 – го рода. Если доопределить функцию в точке , положив , то функция будет непрерывна справа, если положить , то функция будет непрерывной слева, если положить равное произвольному числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа. В этом случае будет иметь в точке разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой.
Определение. Функция называется непрерывной на интервале (отрезке), если она непрерывна в каждой точке интервала (отрезка).
При этом не требуется непрерывность функции на концах отрезка или интервала, необходима только односторонняя непрерывность на концах отрезка или интервала.
Дата добавления: 2015-09-29; просмотров: 549;