IV. Трансмиссивные инфекции, возбудителей которых распространяют насекомые-переносчики, размножающиеся в воде (малярия, желтая лихорадка). 5 страница
_____ ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ_____
шения развития и минерализации костей, у взрослых — изменения в костях подобно остеосклерозу.
Заслуживает внимания тот факт, что фтор имеет очень узкий диапазон физиологических доз. При употреблении воды с содержанием фтора 1,5 мг/л в 20% случаев могут наблюдаться легкие формы флюороза, в то время как при пользовании водой с содержанием фтора 0,7 мг/л и менее повышается заболеваемость кариесом. Указанные обстоятельства делают проблему гигиенического нормирования фтора в воде очень острой.
Нитраты являются постоянными составляющими природных вод. Их гигиеническое значение рассмотрено в подразделе "Эндемическое значение воды" (см. с. 60—62). Напомним, что нитраты являются естественными продуктами аэробного окисления органических азотсодержащих веществ в почве и воде водоемов, что придает им значение санитарно-химических показателей эпидемической безопасности воды. Но нормирование нитратов в питьевой воде основывается не на этом, а на обеспечении безвредности их содержания для здоровья.
Как упоминалось выше, с повышенным содержанием нитратов в питьевой воде связаны: 1) водно-нитратная метгемоглобинемия у новорожденных, детей младшего возраста и лиц пожилого возраста; 2) образование нитрозами-нов и нитрозамидов, обладающих мутагенной и канцерогенной активностью.
О водно-нитратной метгемоглобинемии у младенцев в возрасте до 1 года впервые сообщили Комли в 1945 г. и Уолтон в 1940—1950 гг. В последующие 10—15 лет в разных странах мира было зарегистрировано свыше 1000 случаев этого заболевания у детей раннего возраста. Свыше 100 детей умерли. В Чехословакии было зарегистрировано 115 случаев метгемоглобинемии в результате использования воды с концентрацией нитратов от 70 до 250 мг/л. При этом в 40% случаев наблюдалась легкая форма заболевания, в 52% — тяжелая, а в 8% — с летальными исходами. При углубленном изучении хронического действия субклинических доз нитратов установлено, что метгемоглобинемия легкой степени (концентрация метгемоглобина в крови 5—15%) может развиться у детей при длительном употреблении воды с содержанием нитратов 50 мг/л.
Кроме водно-нитратной метгемоглобинемии, отрицательное влияние нитратов на здоровье может быть обусловлено тем, что они являются предшественниками нитрозаминов и нитрозамидов, которым свойственны мутагенность и канцерогенное действие. На основании эпидемиологических исследований была обнаружена корреляционная связь между концентрацией нитратов в питьевой воде и заболеваемостью атрофическим гастритом и раком желудка. Высокую заболеваемость раком желудка связывают со значительными концентрациями нитратов в питьевой воде — 90 мг/л и более.
Поэтому для профилактики отрицательного воздействия нитратов на здоровье людей, с целью предупреждения возникновения водно-нитратной метгемоглобинемии необходимо, чтобы концентрация нитратов в питьевой воде не превышала 45 мг/л по нитрат-иону (или 10 мг/л по азоту нитратов), что и отражено в государственном стандарте на питьевую водопроводную воду.
РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ
Мышьяк повсеместно содержится в земной коре, откуда его растворимые соединения природным путем попадают в воду подземных и поверхностных водоемов, создавая незначительные концентрации — не выше 0,01 мг/л. Более высокие концентрации характерны для подземных вод, в частности термальных минеральных источников Новой Зеландии. Основной механизм токсического действия мышьяка связан с блокированием тиоловых групп важнейших ферментов, что приводит к нарушению тканевого дыхания и деления клеток. В начальный период интоксикации отмечают потерю аппетита, тошноту, рвоту, чередование поноса и запоров, уменьшение массы тела, выпадение волос, ломкость ногтей, гиперкератоз, головную боль, снижение трудоспособности, расстройства чувствительности. В дальнейшем возможно развитие невритов, параличей, нарушение зрения. Ранним и специфическим симптомом является утолщение рогового слоя кожи ладоней и стоп, вследствие чего отравление назвали копытной болезнью. Одним из первых признаков хронического отравления мышьяком можно считать его накопление в волосах. У людей хроническая интоксикация развивалась при длительном употреблении воды с концентрацией мышьяка 1—4 мг/л, сопровождалась накоплениям его в волосах в количестве 5—85 мг/кг. В некоторых местностях при концентрации 12 мг/л повышался уровень заболеваемости раком кожи. Подобное явление отмечали в Китае при значительно меньшей концентрации мышьяка — 0,5 мг/л. Согласно расчетам экспертов ВОЗ, воздействие на протяжении всей жизни мышьяка, поступающего с питьевой водой в концентрации 0,2 мг/л, дает 5% риск развития рака кожи. Допустимая суточная доза мышьяка определена на уровне 0,05 мг на 1 кг массы тела, или для взрослого человека с массой тела 60 кг — 3 мг/сут. Что же касается поступления с водой, безопасными для здоровья считают концентрации мышьяка, не превышающие 0,05 мг/л, что и отражено в государственном стандарте на питьевую воду.
Известны случаи отравления свинцом вследствие употребления водопроводной воды. В прошлом причинами массового хронического сатурнизма водного происхождения чаще всего служили свинцовые водопроводные трубы и резервуары. Так, в городах Западной Европы во второй половине XX ст. была отмечена вспышка "свинцовой эпидемии". Содержание свинца в воде большинства водоемов незначительно, в пределах 0,001—0,01 мг/л. Высокие концентрации свинца (1—20 мг/л) чаще всего обусловлены использованием свинцовых труб и резервуаров в системах водопровода. Природные воды в районах залегания полиметаллических ископаемых также могут содержать свинец в опасных концентрациях. Свинец, как и другие тяжелые металлы, блокирует сульфгидрильные группы тиоловых ферментов. Наибольшее влияние он оказывает на гидратазу дельта-аминолевулиновой кислоты, что тормозит синтез протопорфирина и в итоге гемоглобина. Хроническая интоксикация свинцом водного происхождения развивается медленно: возникают общая слабость, головная боль, головокружение, неприятный привкус во рту, потеря аппетита, похудение, тремор конечностей, боль в животе, признаки анемии. Со временем возникают парезы, параличи, нарушение гемопоэза, энцефалопатия, ано-рексия, "свинцовые колики". Существует корреляция между концентрацией
ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ
свинца в питьевой воде, если она превышает 0,8 мг/л, и частотой умственной отсталости у детей, смертностью от рака почек и лейкемии. В Глазго в 1972 г. была зарегистрирована хроническая интоксикация вследствие употребления воды с содержанием свинца 2—3 мг/л. Описаны случаи сатурнизма и при концентрации свинца в воде до 1 мг/л. Допустимая суточная доза свинца для взрослого человека — до 0,007 мг/кг, что при массе тела 60 кг составляет 0,42 мг/сут, или 3 мг/нед. Дети, беременные и плод более чувствительны к воздействию свинца. Свинец преодолевает плацентарный барьер и его влияние на развитие плода проявляется в дальнейшем в виде психических расстройств и умственной отсталости у детей. Поступление свинца с водой в организм взрослого человека составляет от 10 до 50% общего суточного количества. Поэтому безопасными для здоровья считаются концентрации свинца в воде до 0,03 мг/л, что и отражено в государственном стандарте на питьевую водопроводную воду. В целом там, где это возможно, воздействие свинца должно быть сведено к минимуму.
Природные количества бериллия в воде очень низкие и не превышают 0,001 мг/л. С водой в организм взрослого человека может поступить до 30% общего суточного количества бериллия. Есть сведения о развитии бериллиево-го дерматита, гранулематозных изъязвлений кожи, конъюнктивита в случаях его контакта с кожей и слизистыми оболочками. Бериллий плохо всасывается в пищеварительном канале. Его токсичность при пероральном поступлении очень низкая. В то же время в исследованиях на животных его канцерогенность доказана. По данным Международного агентства по изучению рака, бериллий является потенциальным канцерогеном и для человека, хотя эпидемиологические исследования пока еще не обнаружили корреляционной связи между поступлением бериллия в организм и развитием рака у людей. Учитывая потенциальную канцерогенность бериллия, безопасными для здоровья можно считать лишь очень низкие его концентрации в воде — до 0,0002 мг/л.
Избыток стронция является центральным звеном в этиологии уровской болезни (болезни Кашина—Бека), которая была обнаружена еще в средине XIX ст. у жителей Забайкалья (район реки Уров). Эта болезнь достаточно распространена в Читинской, Амурской областях, Северо-Восточном Китае, Таджикистане, на юге Кореи и в некоторых других регионах. Болезнь проявлялась поражением костно-суставного аппарата — искривлением костей, их ломкостью, болью в суставах. Указанные дефекты возникали и у домашних животных. После продолжительных исследований, в конце концов, обнаружили связь этого заболевания с избыточным содержанием в природных водах стронция, являющегося конкурентом кальция. В условиях даже незначительного дефицита кальция именно стронций, который легче усваивается организмом, преимущественно встраивается в костную ткань. Но стронций по сравнению с кальцием быстрее выводится из организма, что вызывает деминерализацию костей. Костная ткань становится крохкой, ломкой, что является причиной остеодефор-мирующего остеоартроза, особенно межфаланговых и тазобедренных суставов и позвоночного столба. Именно поэтому типичными внешними симптомами уровской болезни являются "медвежья лапа" и "утиная походка". С целью
РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ
профилактики уровской болезни концентрация стронция в воде не должна превышать 7,0 мг/л, что и отражено в государственном стандарте на питьевую водопроводную воду.
Содержание других микроэлементов в разведанных природных водах значительно ниже опасного, установленного в ходе санитарно-токсикологических экспериментов. Эти химические вещества опасны для здоровья людей в связи с техногенным поступлением их в поверхностные и подземные воды, являющиеся источниками водоснабжения. Поэтому они, как и искусственно синтезированные соединения, отнесены к подгруппе химических веществ, попадающих в воду вследствие промышленного, сельскохозяйственного и бытового загрязнения источников водоснабжения. К этой подгруппе принадлежат тяжелые металлы (кадмий, ртуть, никель, висмут, сурьма, олово, хром и др.), детергенты (синтетические моющие средства или поверхностно активные вещества), пестициды (ДДТ, ГХЦГ, хлорофос, метафос, 2,4-Д, атразин и т. п.), синтетические полимеры и их мономеры (фенол, формальдегид, капролактам и т. п.). Их содержание в воде должно быть безопасным для здоровья людей и их потомков при постоянном, в течение жизни, употреблении такой воды. Этот уровень должен быть безопасным и для чувствительных групп населения — новорожденных, детей в возрасте до 14 лет, беременных, людей пожилого возраста, лиц с хроническими соматическими заболеваниями. Он должен гарантировать отсутствие не только острых и хронических отравлений, но и неспецифического вредного воздействия, связанного с угнетением общей резистентности организма, обеспечивать сохранение репродуктивного здоровья, гарантировать отсутствие мутагенного, канцерогенного, эмбриотоксического, тератогенного, гонадотоксического воздействия и других отдаленных последствий.
Поскольку методы улучшения качества воды на водопроводных станциях (осветление, обесцвечивание, обеззараживание, специальные методы) не дают возможности снизить концентрации названных выше химических веществ, то уже в воде водоемов их содержание должно быть безопасным для здоровья. Такую концентрацию называют ПДК. Сегодня научно обоснованы и утверждены Министерством здравоохранения свыше 1500 гигиенических нормативов вредных веществ в воде водоемов хозяйственно-питьевого и культурно-бытового водопользования.
Токсические химические вещества с одинаковым лимитирующим показателем вредности при одновременном содержании в воде способны оказывать на организм человека комбинированное действие, следствием которого чаще всего является суммация отрицательных эффектов, то есть аддитивное действие. Чтобы гарантировать сохранение здоровья в условиях комбинированного действия, нужно соблюдать правило суммарной токсичности: сумма соотношений фактических концентраций веществ в воде к их ПДК не должна превышать 1:
где Ci, С2, Сп — фактические концентрации химических веществ в воде (мг/л).
ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ
Это правило следует соблюдать при обнаружении в питьевой воде нескольких химических веществ, относящихся к 1-му и 2-му классам опасности1 и нормируемых по санитарно-токсикологическому признаку вредности.
Последнюю группу показателей безвредности по химическому составу составляют вещества, которые добавляют в воду в качестве реагентов во время ее обработки на водопроводных станциях. Например, с целью осветления и обесцвечивания (уменьшения мутности и цветности) речной воды используют коагуляцию, отстаивание и фильтрацию. В качестве коагулянтов используют соли алюминия. Чаще всего — алюминия сульфат, а также натрия алюминат, алюминия оксихлорид и др. После окончания осветления и обесцвечивания нужно обязательно контролировать в воде остаточный алюминий. Нельзя, улучшая органолептические свойства воды (прозрачность, цветность), ухудшать ее химический состав и создавать опасные для здоровья людей концентрации алюминия. В природной воде концентрации алюминия варьируют от 0,001 до 10 мг/л, но чаще всего не превышают нескольких миллиграммов в 1 л. Среднее суточное поступление алюминия в организм человека эксперты ВОЗ оценивают на уровне 88 мг/сут. Преимущественно это алюминий алиментарного происхождения. Если вода содержит алюминий в концентрации 2 мг/л, то в течение суток в организм человека с 3 л такой воды попадет лишь 6 мг алюминия, или 8% общего суточного количества. Алюминий, даже в виде растворимых солей, малотоксичен. Недействующей в хронических опытах на животных оказалась концентрация алюминия в воде на уровне 5 мг/л. Но в последнее время появились сведения о связи между поступлением в организм алюминия и развитием некоторых неврологических расстройств, в частности болезни Альцгеймера. Поэтому безопасными для здоровья считаются концентрации алюминия в воде, не превышающие 0,5 мг/л.
Показатели, характеризующие эпидемическую безопасность воды.Эта группа показателей делится на 3 подгруппы: санитарно-микробиологические, санитарно-паразитологические и санитарно-химические. Они дополняют друг друга, и между ними существует тесная связь. В случае загрязнения воды жидкими и твердыми бытовыми отходами, сточными водами, экскрементами животных и птиц изменяются показатели во всех 3 подгруппах.
Санитарно-микробиологические показатели эпидемической безопасности воды. Критерием безопасности воды в эпидемическом отношении является отсутствие патогенных микроорганизмов — возбудителей инфекционных болезней. Однако даже при современных достижениях микробиологической техники исследование воды на наличие патогенных микроорганизмов — достаточно продолжительный, сложный и трудоемкий процесс. Поэтому такие исследования проводятся не массово, а только в случае неблагоприятной эпидемической ситуации (эпидосложнений), например, при вспышках инфекционных болезней, если есть подозрение на водный путь передачи. В других случаях
Все химические соединения в зависимости от особенностей их токсикологического действия делятся на 4 класса опасности: 1-й — чрезвычайно опасные, 2-й — высоко опасные, 3-й — умеренно опасные, 4-й — малоопасные.
___ РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ
эпидемическую безопасность воды оценивают путем косвенной индикации возможного присутствия возбудителя. Для этого в санитарной практике широко используют два косвенных санитарно-микробиологических показателя — общее микробное число и содержание санитарно-показательных микроорганизмов.
Одним из первых косвенных показателей опасного для здоровья бактериального загрязнения воды был предложен уровень общего количества бактерий (сапрофитов). Многочисленные наблюдения за поверхностными источниками водоснабжения, в которые попали сточные воды населенных пунктов, подтвердили, что существует прямая связь между количеством сапрофитов и степенью бактериального загрязнения. Доказано, что большое количество этих бактерий (сапрофитов) в воде обычно свидетельствует о том, что вода вступила в контакт с загрязнениями, которые могли содержать и патогенные микроорганизмы. При этом считают, что чем больше загрязнена вода сапрофитами, тем выше ее эпидемическая опасность.
К косвенным показателям бактериального загрязнения воды относится общее микробное число, то есть общее количество колоний, вырастающих в течение 24 ч при температуре 37 °С при посеве 1 мл воды на 1,5% мясопеп-тонный агар.
Общее микробное число для незагрязненных артезианских вод не превышает 20—30, для незагрязненных шахтных колодцев — 300—400, для чистых открытых водоемов — 1000—1500, для водопроводной воды в случае эффективного ее обеззараживания — 100 колониеобразующих единиц (КОЕ) в 1 мл. Повышение его может свидетельствовать о высокой возможности наличия в воде патогенных микроорганизмов.
Первые попытки научно обосновать общее микробное число питьевой воды принадлежат Р. Коху. Принимая участие в ликвидации крупной эпидемии холеры в Гамбурге, Роберт Кох установил факт отсутствия вспышки холеры в расположенном неподалеку Альтоне. Он связал этот факт с очисткой речной воды на альтонском водопроводе путем медленной фильтрации. Результаты многочисленных бактериологических исследований, проведенных Р. Кохом, свидетельствуют о том, что вода альтонского водопровода содержала не более 10 сапрофитов в 1 мл. В воде гамбургского водопровода было обнаружено значительно больше микроорганизмов. На этом основании Р. Кох сделал вывод, вода, в которой содержится не более 100 сапрофитов в 1 мл, не содержит патогенных микроорганизмов (в данном случае холерных вибрионов). Уверенности в достоверности результатов своих наблюдений Р. Коху придал тот факт, что они охватили сотни тысяч людей. Дальнейшими исследованиями было подтверждено: питьевая вода безопасна в эпидемическом отношении, если микробное число не превышает 100 в 1 мл. Этот показатель был принят в стандартах многих стран, в том числе в Украине. Российским стандартом на питьевую воду (СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества") предусмотрен показатель микробного числа не более 50 в 1 мл.
Очень важным является обнаружение в воде бактерий группы кишечной палочки (БГКП), которые находятся в испражнениях человека и животных.
ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ
К группе кишечной палочки принадлежат бактерии родов Escherichia, Enterobacter, Klebsiella, Citrobacter и другие представители семейства Enterobacte-riaceae, то есть грамотрицательные палочки, которые не образуют спор и капсул, сбраживают глюкозу и лактозу с образованием кислоты и газа при температуре 37 °С в течение 24—48 ч и не обладают оксидазной активностью '. Селективным для БГКП является питательная среда Эндо 2. На ней БГКП растут в виде темно-красных колоний с металлическим блеском (Е. coli), красных без блеска, розовых или прозрачных с красным центром или краями колоний.
Наличие БГКП в воде свидетельствует о бывшем фекальном загрязнении и соответственно — о возможной контаминации воды патогенными микроор-ганизмами кишечной группы. Количественно наличие БГКП характеризуется двумя показателями: индексом БГКП и титром БГКП. Индекс БГКП (коли-ин-декс) — это количество бактерий группы кишечных палочек в 1 л воды, титр БГКП (коли-титр) — это наименьшее количество исследуемой воды (в миллилитрах), в которой обнаруживается хотя бы одна БГКП.
В зависимости от цели и объекта исследования к санитарно-показательным БГКП предъявляют разные требования.
При исследованиях воды, предназначенной для непосредственного употребления потребителями, которая должна быть эпидемически безопасной, необходимо гарантировать полное отсутствие патогенных микроорганизмов, и поэтому следует как можно полнее учесть наличие всех представителей БГКП. Поэтому во время исследований воды, которая должна быть эпидемически безопасной по своей природе или стала такой после обеззараживания, учитывают БГКП, которые сбраживают глюкозу и лактозу или только глюкозу до кислоты и газа при температуре 37 °С и не обладают оксидазной активностью3. Так определяют коли-индекс и коли-титр водопроводной воды, воды после обеззараживания (хлорирование, озонирование), артезианской и межпластовой ненапорной воды, колодезной воды.
Многолетний опыт свидетельствует, что вода безопасна в эпидемическом отношении, если ее коли-индекс не превышает 3 (коли-титр не менее 300). При таком коли-индексе не зарегистрировано ни одного случая водной эпидемии, что можно объяснить таким образом. Доказано, что в фекалиях больных кишечными инфекциями соотношение патогенных микроорганизмов и кишечных палочек составляет 1:10. В сточных водах и воде открытых водоемов это соотношение составляет 1:100—1:1000, т. е. отклоняется в сторону увеличения более стойких в окружающей среде БГКП. При коли-индексе 3 с физиологической суточной нормой воды 3 л в организм человека теоретически может поступить лишь 9 БГКП. В таком случае при соотношении между патогенными микроорганизмами и кишечной палочкой (1:10) попадание в организм хотя бы одного возбудителя кишечных инфекций почти невозможно.
Водные микроорганизмы семейства Pseudomonadoceae отличаются от БГКП тем, что не сбраживают лактозу и в оксидазном тесте являются положительными.
Среда Эндо содержит агар, лактозу, натрия сульфит и основной фуксин; pH среды 7,4.
БГКП, которые сбраживают лактозу до кислоты и газа при температуре 37 °С за 24 ч, называют коли-формными бактериями.
РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ
Кроме того, для каждого патогенного микроорганизма существует инфицирующая доза, т. е. то наименьшее количество возбудителей данного штамма, которое способно вызвать инфекционный процесс в организме человека. В опытах на волонтерах установлено, что для сальмонелл брюшного тифа она составляет 105, для холерного вибриона — 106—10й, для энтеропатогенных кишечных палочек (Е. coli 0124) — 108, шигелл дизентерии —10—100 бактерий, т. е. попадание в организм человека лишь одного возбудителя кишечной инфекции в большинстве случаев не способно привести к развитию инфекционного заболевания.
Таким образом, питьевая вода должна иметь коли-индекс не выше 3, что и отражено в стандартах многих стран, в том числе и в Украине. Российским стандартом на питьевую воду (СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества") предусмотрен более жесткий норматив: общие ко-ли-формные бактерии не должны обнаруживаться в 100 мл воды (при определении проводят трехкратное исследование по 100 мл отобранной пробы воды).
Для оценки возможности и уровня фекального загрязнения воды открытых водоемов, случайного вторичного загрязнения водопроводной воды (в сети или водоразборной колонке), особенно при неблагоприятной эпидемической ситуации, а также для характеристики уровня загрязнения хозяйственно-бытовых сточных вод и почвы определяют содержание БГКП, которые способны сбраживать глюкозу и лактозу при повышенной температуре (43—44 °С) за 24 ч. Их называют термотолерантными кишечными палочками. БГКП, которые способны сбраживать глюкозу и лактозу или только глюкозу до кислоты и газа при температуре 43—44,5 °С за 24 ч, свидетельствуют о неопределяемом во времени фекальном загрязнении. Показателями свежего фекального загрязнения является БГКП, которые сбраживают лактозу до кислоты и газа при температуре 43—44,5 °С за 24 ч1.
Санитарно-химические показатели эпидемической безопасности водысвидетельствуют прежде всего о наличии в воде органических веществ и продуктов их разрушения. Органические вещества, являющиеся природными продуктами жизнедеятельности теплокровных животных и человека, это субстраты существования как сапрофитов кожи и слизистых оболочек, так и патогенных микроорганизмов. Поэтому повышенные уровни органического загрязнения воды опосредованно свидетельствуют о возможности ее эпидемической опасности.
Перманганатная окисляемость — это количество кислорода (в миллиграммах), которое необходимо для химического окисления легкоокисляющих-ся органических и неорганических веществ (солей двухвалентного железа, сероводорода, аммонийных солей, нитритов и т. д.), содержащихся віл воды. Окислителем при определении этого показателя является перманганат калия, чем и обусловлено название показателя.
Наименьшую перманганатную окисляемость имеет артезианская вода — до 2 мг 02 на 1 л. С повышением интенсивности окрашивания воды перманганатная окисляемость возрастает. В грунтовых водах этот показатель достигает
БГКП, которые сбраживают лактозу до кислоты и газа при температуре 43—44,5 °С за 24 ч, называют фекальными коли-формными бактериями.
ГИГИЕНИЧЕСКОЕ НОРМИРОВАНИЕ КАЧЕСТВА ПИТЬЕВОЙ ВОДЫ
2—4 мг 02 на 1 л, в воде открытых водоемов может быть 5—8 мг 02 на 1 л и более. Повышение перманганатной окисляемости воды выше названных величин свидетельствует о возможном загрязнении источника воды легкоокисляю-щимися веществами минерального или органического происхождения.
Выделяют также бихроматную окисляемость, или химическое потребление кислорода (ХПК). ХПК — это количество кислорода (в миллиграммах), необходимое для химического окисления всех органических и неорганических восстановителей, которые содержатся віл воды. Окислителем при определении этого показателя является калия бихромат. Чистые подземные воды имеют ХПК в пределах 3—5 мг/л, поверхностные — 10—15 мг/л.
Биохимическое потребление кислорода (ВПК)— это количество кислорода (в миллиграммах), необходимое для биохимического окисления (за счет жизнедеятельности микроорганизмов) органических веществ, которые содержатся в 1 л воды, при температуре 20 °С на протяжении 5 сут (БПК5), или 20 сут (БПК20). БПК20 еще называется полной БПК (БПКП0Л).
Чем более загрязнена вода органическими веществами, тем выше ее БПК. ; БПК5 в воде очень чистых водоемов меньше 2 мг 02/л, в воде относительно чистых водоемов — 2—4 мг 02/л (БПК20 3—6 мг 02/л), в воде загрязненных водоемов — свыше 4 мг 02/л (БПК20 свыше 6 мг 02/л).
Растворенный кислород. Под растворенным кислородом воды подразумевают количество кислорода, содержащееся в 1 л воды. Определение показателя растворенного в воде кислорода имеет значение для характеристики санитарного режима открытых водоемов. Кислород воздуха диффундирует в воду и растворяется в ней. Некоторое количество кислорода образуется вследствие жизнедеятельности хлорофильных водорослей. Количество кислорода, которое может раствориться в воде, увеличивается с возрастанием атмосферного давления и снижением температуры.
Наряду с обогащением воды кислородом, он расходуется на биохимическое окисление органических веществ, находящихся в воде, то есть на процессы самоочищения водоема, а также на дыхание аэробных гидробионтов, в частности рыб. Чтобы не нарушались процессы самоочищения, не гибли гидробион-ты, содержание кислорода в воде водоема должно быть не менее 4 мг/л. При попадании в водоем сточных вод, содержащих большое количество органических веществ, растворенный кислород расходуется на их окисление. То есть в случае загрязнения воды органическими веществами значительно повышается БПК и уменьшается содержание растворенного кислорода. К уменьшению содержания растворенного кислорода приводит также бурное развитие водорослей с дальнейшим их отмиранием, что наблюдается при эвтрофикации водоемов вследствие чрезмерного поступления биогенных веществ, в частности компонентов минеральных удобрений в составе поверхностного стока с сельскохозяйственных угодий. Таким образом, в загрязненных водоемах уровень насыщения воды кислородом ниже, чем в чистых.
Хлориды относятся к химико-органолептическим показателям качества воды. В то же время, принимая во внимание большое количество хлоридов в моче и поте человека и животных и, как следствие, в хозяйственно-бытовых
РАЗДЕЛ I. ГИГИЕНА ВОДЫ И ВОДОСНАБЖЕНИЯ НАСЕЛЕННЫХ МЕСТ
сточных водах, жидких бытовых отходах, сточных водах животноводческих и птицеводческих комплексов, поверхностных стоках с пастбищ и т. п., их содержание также используют как косвенный санитарно-химическии показатель эпидемической безопасности воды. Кроме того, хлориды могут поступать в водоемы со сточными водами промышленных предприятий, например металлургических, т. е. не иметь ничего общего с возможным одновременным органическим и бактериальным загрязнением. Для оценки происхождения хлоридов следует учитывать характер водного источника, их содержание в воде соседних однотипных водных источников, а также другие показатели загрязнения воды. Какое-либо изменение концентрации хлоридов, особенно в воде подземных источников, может свидетельствовать об их загрязнении.
Дата добавления: 2015-09-02; просмотров: 1338;