Построение плоских фигур.

· Построение треугольника АВС по трем отрезкам m, n, и p (рис. 2.16). На произвольной прямой откладывают отрезок АВ = n. Из точки А как из центра описывают дугу радиусом R1 = m, а из точки В – дугу радиусом R2 = p до взаимного их пересечения в точке С. Найденную точку С соединяют с точками А В.   Рис. 2.16

 

· Построение многоугольника, равного данному (рис. 2.17, 2.18). Это построение можно выполнить двумя способами:

1.Способ (триангуляции). Из точки А (рис. 2.17) проводят диагонали, делящие многоугольник на треугольники. Искомый многоугольник строят поэтапно как ряд последовательных треугольников по трем отрезкам способом, показанным на рис. 2.16.   Рис. 2.17

2. Способ (координатный). Положение любой точки на плоскости может быть задано ее координатами, например точки А (рис. 2.19), определяется ее координатами ХА и YА. На нижнем рисунке изображено упрощенное построение точки А по ее координатам ХА и YА. На рис. 2.18 показано построение многоугольника А1В1С1D1Е1 равному многоугольнику АВСDЕ по координатам.

 

  Рис. 2.19   Рис. 2.18

 








Дата добавления: 2015-09-25; просмотров: 1087;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.