Основные гуморальные факторы, влияющие на тонус сосудов
| Вазоконстрикторы | Вазодилататоры |
| · Вазопрессин · Ангиотензин –II · Катехоламины · Эндотелин-1 · Лейкотриены · Простагландин F2a (PGF2a) · Тромбоксан А2 (TxA2) · Серотонин · 20-НЕТЕ (20-гидрокси-эпоксиэйкозотетраеновая кислота) | · Кинины · Натрийуретические пептиды (А, В, С) · Эндотелиальный релаксирующий фактор (оксид азота, NO) · Эндотелиальный гиперполяризующий фактор (EDHF) · Аденозин · Простациклин, · Ацетилхолин · Гистамин · Простагландин Е2 · АТФ, АДФ · Адреномедуллин |
Таблица 2
Изоформы NO-синтаз (по Moncada и соавт., 1997)
| Нейрональная NO-синтаза (nNOS, NOS-1) | Индуцируемая NO-синтаза (iNOS, NOS-2) | Эндотелиальная NO-синтаза (eNOS, NOS-3) | |
| Основная регуляция | Са++/кальмодулин | Экспрессия гена | Са++/кальмодулин |
| Внутриклеточная локализация | Цитозоль ? | Цитозоль >> мембрана | Мембрана >> цитозоль |
| Количество образующегося NO | Небольшое (пмоль) | Большое (микромоль) | Небольшое (пмоль) |
| Функция | Регуляция | Цитотоксическая Цитостатическая Цитопротекторная | Регуляция |
Эндотелиальная NO-синтаза (eNOS) образуется главным образом в эндотелии сосудов. Нейрональная NO-синтаза (nNOS) локализуется преимущественно в нейронах головного мозга, хотя этот фермент присутствует в небольших количествах и в других органах и тканях. Индуцируемая NO-синтаза (iNOS) синтезируется в эндотелиальных и гладкомышечных клетках сосудов, кардиомиоцитах, макрофагах и других клетках после их активации такими цитокинами, как a-ФНО, ИЛ-1, интерферон-g и др. На тонус коронарных артерий основное влияние оказывает оксид азота, образующийся при участии эндотелиальной и индуцируемой NO-синтазы. Оксид азота имеет большое значение и как фактор тромборезистентности сосудистой стенки, в регуляции адгезии лейкоцитов, а также фактор, участвующий в регуляции процессов апоптоза и пролиферации клеток, что имеет важное значение в механизме ремоделирования миокарда.
Эндотелиальный гиперполяризующий фактор (EDHF). Структура этого фактора до конца не установлена. Предполагается, что в качестве EDHF выступают ионы калия (К+) либо оксид азота, который не полностью блокируется нитроаргинином, анандамид (эндогенный каннабиоид), перекись водорода или другие вещества (рис. 3).
|
Большинство исследователей предполагает, что этим фактором являются метаболиты арахидоновой кислоты по эпоксигеназному, цитохром-P450-зависимому пути – эпоксиэйкозатриеновые кислоты (ЕЕТ). EDHF является мощным вазодилататором, который воздействует на Са++-зависимые-К+-каналы гладкомышечных клеток сосудов, стимулируя выход из них ионов калия, что вызывает их гиперполяризацию и расслабление, сопровождающееся вазодилатацией.
Предполагается, что в артериях основным вазодилататором является NO; в артериолах диаметром более 100 мкм NO и EDHF имеют равное значение, а в артериолах менее 100 мкм большее значение имеет EDHF (рис. 4). Таким образом, EDHF образуются преимущественно в сосудах резистивного типа и значительно в меньших количествах в проводящих сосудах. Значение EDHF как регулятора коронарного кровотока требует дальнейшего изучения.
Простациклин. Простациклин является метаболитом арахидоновой кислоты и образуется преимущественно в эндотелии. Основными ферментами, регулирующими образование простациклина, являются циклооксигеназы (ЦОГ-1 и ЦОГ-2). ЦОГ-1 постоянно присутствует в клетках, т.е. является конститутивным ферментом, хотя его активность модулируется различными факторами, включая напряжение сдвига. ЦОГ-2 является индуцируемым ферментом и образуется в макрофагах, фибробластах, гладкомышечных и эндотелиальных клетках сосудов при стимуляции липополисахаридом, цитокинами, некоторыми гормонами, и другими факторами. Простациклин оказывает вазодилатирующее действие за счет стимуляции специфических рецепторов (PI) гладкомышечных клеток сосудов, что приводит к повышению активности в них аденилатциклазы и увеличению образования циклической АМФ. PI рецепторы также аффинны к действию PGE2 и PGD2, хотя и в значительно меньшей степени, чем к простациклину.
Роль простациклина как регулятора коронарного кровотока изучена недостаточно. Простациклин имеет важное значение не только как фактор, влияющий на сосудистый тонус, но и как фактор тромборезистентности сосудов.
Стимулами для образования эндотелиальных вазодилататоров и, в частности, оксида азота, является напряжение сдвига, которое зависит от скорости кровотока в сосуде. При увеличении скорости потока крови в результате воздействия на механорецепторы эндотелия происходит активация эндотелиальной NO-синтазы. При более длительном действии напряжения сдвига увеличивается и синтез эндотелиальной NO-синтазы. Эти процессы сопровождаются повышением образования оксида азота и вазодилатацией. Кроме того, эндотелиальные вазодилататоры вырабатываются при действии на эндотелиальные рецепторы таких веществ как брадикинин, ацетилхолин, гистамин и некоторых других (рис. 5).
|
Таким образом, важнейшим механизмом регуляции тонуса сосудов в миокарде является эндотелий-зависимая вазодилатация, которая в нормальных условиях доминирует над вазоконстрикцией, что поддерживает адекватный кровоток в органе.
Аденозин.Аденозин является одним из наиболее мощных вазодилататоров. На стенке сосуда имеется несколько типов аденозиновых рецепторов: А2А и А2В рецепторы. Стимуляция обоих типов рецепторов приводит к повышению активности аденилатциклазы и увеличению концентрации цАМФ в клетках. Как А2А, так и А2В рецепторы находятся на гладкомышечных клетках сосудов и могут непосредственно вызывать их расслабление и вазодилатацию. А2В рецептор имеется и на эндотелиальных клетках. При его активации стимулируется NO-зависимая вазодилатация.
Концентрации аденозина, влияющие на сосудистый тонус, образуются в условиях гипоксии или ишемии миокарда, когда происходит распад АТФ и, особенно АДФ. В норме роль аденозина как регулятора коронарного кровотока не доказана.
Пуриновые основания. Источниками пуриновых нуклеотидов (АТФ, АДФ, уридин-5¢-трифосфата (УТФ), УДФ), которые воздействуют на стенку сосуда, являются тромбоциты, сами эндотелиоциты, нейроны и кардиомиоциты. Пуриновые нуклеотиды воздействуют на P2Y1 и P2Y2 рецепторы эндотелиальных клеток, стимулируя образование всех эндотелиальных вазодилататоров. При воздействии на рецепторы P2Y1 гладкомышечных клеток сосудов нуклеотиды вызывают эндотелий-независимую вазодилатацию, связанную с активацией АТФ-зависимых калиевых каналов. При действии пуриновых нуклеотидов, прежде всего АДФ, на P2X1 и P2Y2 рецепторы гладкомышечных клеток сосудов возникает вазоконстрикция.
Калликреин-кининовая система.При активации этой системы образуется несколько вазоактивных веществ: брадикинин (в плазме крови) и каллидин, или тканевой калликреин, который синтезируется преимущественно в эндотелии и гладкомышечных клетках кровеносных сосудов. Кинины разрушаются карбоксипептидазами (кининазами-1), причем образующиеся под действием этих ферментов метаболиты биологически активны. Продукты расщепления кининов ангиотензинпревращающим ферментом (кининазой-2) биологически неактивны. Разрушение брадикинина происходит достаточно быстро, так 95% разрушается при прохождении через легкие. В коронарных сосудах кинины разрушаются посредством ангиотензинпревращающего фермента, а в интерстиции миокарда – нейтральной эндопептидазой.
Основной вазодилатирующий эффект кининов связан с активацией В2 рецепторов на эндотелии, после чего происходит образование основных эндотелиальных вазодилататоров: NO, простациклина, EDHF.
|
Эндотелины.Эндотелины (ЭТ) -семейство пептидов, влияющих на функциональную активность эндотелия. В эндотелии вырабатывается только ЭТ-1, который является наиболее активным. Воздействуя на специфические ЭТА и ЭТB2 рецепторы гладкомышечных клеток сосудов, эндотелины вызывают вазоконстрикцию. Стимуляция ЭТB1 рецепторов эндотелия вызывает увеличение синтеза оксида азота и простациклина в эндотелии, что сопровождается вазодилатацией (рис. 6).
В ответ на внутривенное введение ЭТ-1 происходит кратковременное понижение артериального давления, связанное с вазодилатацией (посредством активации ЭТB1 рецепторов), после чего отмечается длительное повышение давления за счет вазоконстрикции. Вазодилатация, вызванная введением ЭТ-1 является наиболее выраженной при его введении в малых концентрациях. Предполагается, что при ишемической болезни сердца (ИБС) образование эндотелина-1 увеличивается и это усиливает спазм сосудов сердца.
Тромбоксан-А2. Тромбоксан-А2 является метаболитом арахидоновой кислоты. Основным источником тромбоксана-А2 (TxA2) являются тромбоциты, однако небольшие количества TxA2 образуются и в эндотелии. TxA2 имеет очень короткий период полураспада. Так, в крови среднее время полураспада составляет 30-50 с. Тромбоксан А2 (TхA2) может в значительной степени влиять на сосудистый тонус. Специфические рецепторы к тромбоксану (ТР) расположены на гладкомышечных клетках сосудистой стенки, однако они способны связываться и с другими метаболитами арахидоновой кислоты, правда со значительно меньшей степенью аффинности. Так, было показано, что ТР-зависимое сокращение кольца аорты крыс вызывалось также действием PGF2a и PGE2. Сокращение гладкомышечных клеток при стимуляции ТР связано с уменьшением активности аденилатциклазы и повышением содержания внутриклеточного кальция. Тромбоксан-А2, выделяющийся из тромбоцитов, может способствовать нарушению регуляции тонуса сосудов, что, как предполагается, является одним из патогенетических факторов при стенокардии покоя.
Ангиотензин-II. Ангиотензин-II (АТ-II) образуется в результате активации ренин-ангиотензиновой системы и является одним из наиболее сильных вазоконстрикторов. Рецепторы к АТ-II делятся на два основных типа: 1-й (AT1Rс) и 2-й (AT2Rс). Оба типа рецепторов имеются как на эндотелиальных клетках, так и на гладкомышечных клетках сосудов. Большая часть эффектов АТ-II в сердце обеспечивается посредством рецепторов 1-го типа. Образование ангиотензина-II из ангиотензина-I происходит под действием ангиотензинпревращающего фермента (АПФ), который синтезируется в различных клетках сосудов, в частности, эндотелиоцитах, гладкомышечных клетках и макрофагах. Ангиотензин-II вызывает констрикцию коронарных сосудов, воздействуя на AT1Rс. Этот эффект напрямую связан с образованием в эндотелии эндотелина-1. Кроме того, под действием АТ-II ускоряется апоптоз эндотелиоцитов, происходит миграция и пролиферация гладких миоцитов, что имеет большое значение в атеросклеротическом поражении сосудов, а также активируется гипертрофия кардиомиоцитов, что играет важную роль в процессах ремоделирования миокарда. Стимуляция AT2Rс приводит к образованию в эндотелии оксида азота и ослабляет констрикторную реакцию, вызванную ангиотензином-II.
Учитывая, что значительное количество АТ-II образуется непосредственно в сердце, и то, что влияние этого фактора затрагивает самые разные процессы, в последнее время ему уделяется особое внимание, в том числе, как к одному из звеньев патогенеза ишемии.
Дата добавления: 2015-09-18; просмотров: 2902;
