Поток вектора
Понятие векторного анализа наиболее наглядны при рассмотрении поля вектора скорости текущей жидкости. Собственно они и возникли в процессе развития гидродинамики, и этим обусловлена терминология, используемая в векторном анализе.
Рассмотрим течение идеальной жидкости, т.е. жидкости несжимаемой, молекулы которой взаимодействуют абсолютно упруго.
По определению, объемжидкости, протекающий в единицу времени через некоторую воображаемую поверхность называется потоком жидкости через S. Пусть скорость направленного движения частиц жидкости, пересекающих поверхность , равна . Выделим мысленно на поверхности элемент и будем считать, что он настолько мал, что в его пределах скорость направленного движения частиц жидкости одинакова. Ориентацию в пространстве этого элемента зададим ортом нормали к нему . За время через пройдет жидкость, заключенная в объеме
(13.02)
Следовательно, по определению потока, элементарный поток через :
(13.03)
Устремив размеры элемента поверхности к нулю ( → 0), получим соотношение:
(13.04)
Формула (13.04) в соответствии с определением скалярного произведения векторов эквивалентна следующим:
. (13.06)
Тогда поток жидкости через всю поверхность должен определяться соотношением:
(13.07)
Распространив этот подход на все векторные поля, можем сформулировать определение потока произвольного вектора через поверхность :
(13.08)
Основные свойства потока вектора: скалярная алгебраическая величина, знак которой зависит от выбора направления нормали к .
В случае замкнутых поверхностей всегда используется внешняя нормаль.
Дата добавления: 2015-09-14; просмотров: 1077;