Полный дифференциал функции нескольких переменных

 

Если функция дифференцируема в точке , то, как было показано выше, ее полное приращение в этой точке можно представить в виде

.

 

Сумма первых двух слагаемых есть главная линейная (относительно и ) часть приращения функции.

 

Определение. Если функция дифференцируема в точке , то главная, линейная относительно приращения аргументов, часть ее полного приращения называется полным дифференциалом функции и обозначается

.

 

Приращения независимых переменных и называют дифференциалами независимых переменных и и обозначают соответственно и . Тогда полный дифференциал функции можно записать в виде:

 

или в более краткой форме: .

Пример. Найти полный дифференциал функции .

Решение. для .

 

Пример. Найти полный дифференциал функции .

Решение. Найдем частные производные функции:

,

.

 

Следовательно,

для .

 

Определение полного дифференциала легко обобщается на случай функции любого числа переменных. Например, полным дифференциалом функции трех переменных в точке называется главная, линейная относительно приращений всех аргументов, часть полного приращения функции, т. е.

 

.

 

Из определения дифференциала функции нескольких переменных следует, что для функции можно полагать , а для функции , зависящей от трех переменных , для , .

 

Эти соотношения позволяют получить формулы для приближенного вычисления значений функции:

 

,

.

 

И в общем случае,

.

 

Полный дифференциал чаще используется для оценки погрешности вычислений по формулам.

 

Например, если задана дифференцируемая функция переменных . Тогда абсолютная погрешность вычислений по этой формуле оценивается величиной

 

,

а относительная погрешность ― величиной .









Дата добавления: 2015-08-21; просмотров: 1289;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.