МАТЕМАТИЧЕСКИЕ МОДЕЛИ УСТАНОВИВШЕГОСЯ И ПЕРЕХОДНОГО РЕЖИМОВ И МЕТОДЫ ИХ ЛИНЕАРИЗАЦИИ

 

Напомним, что математическая модель установившегося режима (иначе — статическая характеристика элемента или системы) отражает функциональную связь между входными и выходными величинами в установившемся состоянии, а математическая модель переходного режима (динамическая характеристика элемента или системы) описывает изменение выходной величины во времени в зависимости от изменения входной величины.

Как уравнения статики, так и уравнения динамики могут быть линейными или нелинейными, в последнем случае они подлежат линеаризации.

(3.1)
Линеаризация уравнений динамики.Итак, в общем случае при наличии одной выходной (у) и нескольких входных величин (х) динамика элемента (системы) описывается дифференциальным уравнением (для двух х1 и х2)

,

где F — некоторая нелинейная функция; n, т, l — целые натуральные числа, определяющие наивысший порядок входящих в уравнение производных входной и выходной величин по времени.

 

Для реальных систем порядок дифференциального уравнения n > т и n > l. Линеаризацию нелинейных дифференциальных уравнений осуществляют методом малых отклонений. При этом вместо абсолютного значения переменных в уравнении (3.1) используют их отклонения от начального значения

.

В результате уравнение (3.1) становится линейным ипри одной входной величине может быть записано в виде

,

где a0… an , b0… bm - постоянные коэффициенты.

Линеаризация уравнений статики.Уравнения статики элементов (систем) автоматического управления, как правило, нелинейные и могут быть представлены в виде кривой или ломаной линии.

Линеаризация нелинейных статических характеристик осуществляется несколькими способами.

Метод малых отклонений. Основан на разложении аналитической функции в ряд Тейлора и отбрасывании малозначащих членов.

Таким образом, линеаризованное уравнение , где ; .

Метод касательной (рис. 3.1, а). Основан на замене участка кривой прямой линией, касательной к этой кривой в точке А 0, у0), называемой рабочей точкой и находящейся в середине рабочего диапазона изменения . Как и в предыдущем случае, линеаризованное уравнение , где .

Метод секущей. Основан на замене уравнения нелинейной характеристики уравнением секущей, параметры которого определяют методом наименьших квадратов.

Первый из рассмотренных методов применяют, когда статическая характеристика задана аналитически, второй и третий — графически.

Встречаются элементы автоматической СУ, статические характеристики которых не поддаются линеаризации указанными ранее методами. Эти характеристики называют существенно нелинейными.

Рис. 3.1. Линеаризация статической характеристики (а) и модель пневматической камеры (б)

 








Дата добавления: 2015-07-14; просмотров: 1920;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.