Представление Пуассона для гармонических функций, принадлежащих некоторым классам

Пусть известно лишь, что функция U(z) гармонична в круге {|z| < 1}. Замечательно, что часто её всё же можно представить в этом круге по формуле Пуассона.

Теорема. Пусть р > 1, и пусть V (г) — гармоническая функция в {\z\ < 1}. Предположим, что средние

ограничены при r<.1. Тогда существует такая функция , что

для г < 1,

Доказательство.

При р > 1 пространство является cопряжённым с , где . Для функций (вместо подходит любая последова­тельность , стремящаяся к 1 снизу) имеем ( здесь, конечно, берётся по отрезку (—π,π)), так что канторовским диагональным процессом мы можем выделить из них подпоследовательность Unh такую что для всех функций G, пробегающих некоторое счётное всюду плотное подмножество пространства , существует предел

Так как , то этот предел LG на самом деле существует для всех и LG является ограниченным линейным функционалом на Lq. Следовательно, поскольку пространство Lp сопряжено с Lq, то существует такая функция , что

всех .

Теперь, для каждого п функция гармонична в , так что если r < 1, то

Зафиксируем произвольное r <. 1 и любое θ и возьмём G (t) = . Тогда

В этом равенстве слева стоит

Таким образом,

,

где

Замечание Тот же результат справедлив с тем же доказательством и при р =∞, если мы немного изменим формулировку теоремы:

Теорема. Если U(z) — ограниченная гармоническая функция в {|z| < 1}, то существует функция , такая что

А что же в случае р=1? Пространство , к сожалению, не является сопряжённым ни с каким другим. Но М — пространство конечных вещественных мер μ на [-π, π] с нормой ||μ||, равной полной вариации меры μ,— сопряжено с С [-π, π] —пространством непрерывных функций на [-π, π]. Если , то мы можем связать с g меру μ, положив

при этом .

Теперь рассуждение, проведенное при доказательстве первой теоремы этого пункта, показывает, что справедлива такая

Теорема. Если U(z)—гармоническая функция в круге {|z|< 1} и средние

ограничены при r< 1, то существует конечная вещественная мера μ на [-π, π], такая что

для 0≤r< 1.

Следствие (Званс). Пусть U(z)-функция, гармоническая и положительная (здесь и далее «положительный» означает «неотрицательный») в круге {|z|<1}. Тогда существует конечная положительная мера μ на [-π, π],, такая что

Доказательство.

Для r<1 (используя, например, разложение , имеющее место в {|z| < 1}) получаем

,

гак как . А теперь применяем теорему. Мера μ положительна, потому что в этом случае (см. опять доказательство первой теоремы этого пункта) оказывается, что интеграл положителен для любой положительной функции как предел положительных чисел!








Дата добавления: 2015-08-14; просмотров: 611;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.