Механические гармонические колебания. Гармонический осциллятор

 

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени.

Колебательную систему вне зависимости от ее физической природы называют осциллятором(груз, подвешенный на нти).

Физическая природа колебаний может быть разной, поэтому различают колебания механические, электромагнитные и др. Однако различные колебательные процессы описываются одинаковыми характеристиками и одинаковыми уравнениями.

Колебания условно делят на простые и сложные. К ним относятся: свободные колебания, затухающие колебания и вынужденные колебания.

Колебания называются свободными (или собственными), если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на тело или систему.

Гармонические колебания – колебания, при которых колеблющаяся физическая величина изменяется во времени по закону синуса (косинуса).

Гармонические колебания описываются уравнением

x = A sin (ωot + φo),(1)

где х –смещение;

А – амплитуда;

(ωot+φo) – фаза колебаний;

φo – начальная фаза.

 

Первая производная от смещения по времени определит выражение для скорости колеблющейся точки:

. (2)

 

Cкорость достигает максимального значения в момент времени, когда cos (ωot + φo) = 1, тогда .

Для определения ускорения колеблющейся точки найдем вторую производную от смещения по времени:

. (3)

 

Максимальное ускорение - .

На рис.1. представлены графические зависимости смещения, скорости и ускорения. Из рисунка видно, что скорость достигает максимального значения, когда колеблющаяся точка проходит положение равновесия. В этот момент смещение и ускорение равны нулю.

Рис.1

 








Дата добавления: 2015-08-11; просмотров: 1208;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.