Вероятность попадания случайной величины на заданный интервал

 

Вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу равна определенному интегралу от плотности распределения, взятому в пределах от до

Вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу равна площади криволинейной трапеции, ограниченной осью кривой распределения и прямыми

Рассмотрим пример. Задана плотность вероятности случайной величины

 

 

Найти вероятность того, что в результате испытания примет значение, принадлежащее интервалу

Искомая вероятность

 








Дата добавления: 2015-08-11; просмотров: 985;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.