PID - управление
ПИД-регулятор относится к наиболее распространенному типу регуляторов. Около 90...95% регуляторов , находящихся в настоящее время в эксплуатации , используют ПИД алгоритм. Причиной столь высокой популярности является простота построения и промышленного использования, ясность функционирования, пригодность для решения большинства практических задач и низкая стоимость. Среди ПИД-регуляторов 64% занимают одноконтурные регуляторы и 36% - многоконтурные. Контроллеры с обратной связью охватывают 85% всех приложений, контроллеры с прямой связью - 6%, контроллеры, соединенные каскадно - 9% .
ПИД-регулятор использует пропорционально-интегрально-дифференциальный закон регулирования. ПИД-регулятор, воплощенный в виде технического устройства, называют ПИД-контроллером. ПИД-контроллер обычно имеет дополнительные сервисные свойства автоматической настройки, сигнализации, самодиагностики, программирования, безударного переключения режимов, дистанционного управления, возможностью работы в промышленной сети и т д.
После появления дешевых микропроцессоров и аналого-цифровых преобразователей в ПИД-регуляторах используется автоматическая настройка параметров, адаптивные алгоритмы, методы нечеткой логики, генетические алгоритмы. Усложнились структуры регуляторов: появились регуляторы с двумя степенями свободы, с применением принципов разомкнутого управления в сочетании с обратной связью, со встроенной моделью процесса.
Несмотря на долгую историю развития, остается много проблем в вопросах устранения интегрального насыщения, при регулировании в контурах с гистерезисом, нелинейными объектами и транспортной задержкой; практические реализации ПИД-контроллеров не всегда содержат фильтры, граничная частота фильтра часто выбрана неправильно, чрезмерный шум и внешние возмущения затрудняют настройку параметров. Проблемы усложняются тем, что в современных системах управления динамика часто неизвестна, регулируемые процессы нельзя считать независимыми, измерения сильно зашумлены, нагрузка непостоянна, технологические процессы непрерывны.
Часть проблем возникает по причине сложности эксплуатации. Во многих ПИД-контроллерах дифференциальная компонента выключена только потому, что ее трудно правильно настроить. Пользователи пренебрегают процедурой калибровки, недостаточно глубокие знания динамики регулируемого процесса не позволяют правильно выбрать параметры регулятора. В результате 30% регуляторов, используемых в промышленности, настроены неправильно. Поэтому основные усилия исследователей в настоящее время сосредоточены на поиске надежных методов автоматической настройки регуляторов, как встроенных в ПИД контроллер, так и функционирующих на отдельном компьютере.
Дата добавления: 2015-08-11; просмотров: 1760;