Теорема об ускорениях точек плоской фигуры

Ускорение произвольной точки твёрдого тела, участвующего в плоском движении, можно найти как геометрическую сумму ускорения полюса и ускорения данной точки во вращательном движении вокруг полюса.

Для доказательства этого положения используем теорему сложения ускорений течки в составном движении. Примем за полюс точку . Подвижную систему координат будем перемещать поступательно вместе с полюсом (рис.1.15 а). Тогда относительным движением будет вращение вокруг полюса. Известно, что кориолисово ускорение в случае переносного поступательного движения равно нулю, поэтому

.

Т.к. в поступательном движении ускорения всех точек одинаковы и равны ускорению полюса, имеем .

Ускорение точки при движении по окружности удобно представить в виде суммы центростремительной и вращательной составляющих:

.

Следовательно

.

Направления составляющих ускорения показаны на рис.1.15 а.

Нормальная (центростремительная) составляющая относительного ускорения определяется формулой

Величина его равна Вектор направлен вдоль отрезка АВ к полюсу А (центром вращения вокруг является ).

Рис. 1. 15. Теорема о сложении ускорений (а) ее следствия (б)

Касательная (вращательная) составляющая относительного ускорения определяется формулой

.

Модуль этого ускорения находится через угловое ускорение . Вектор направлен перпендикулярно к АВ в сторону углового ускорения (в сторону угловой скорости, если движение ускоренное и в противоположную сторону вращения, если движение замедленное).

Величина полного относительного ускорения определяется по теореме Пифагора:

.

Вектор относительного ускорения любой точки плоской фигуры отклонён от прямой, соединяющей рассматриваемую точку с полюсом на угол , определяемый формулой

.

На рис.1.15 б показано, что этот угол одинаков для всех точек тела.

 

Следствие из теоремы об ускорениях.

Концы векторов ускорений точек прямолинейного отрезка на плоской фигуре лежат на одной прямой и делят её на части, пропорциональные расстояниям между точками.

Доказательство этого утверждения следует из рисунка:

.

Методы определения ускорений точек тела при плоском его движении идентичны соответствующим методам определения скоростей.








Дата добавления: 2015-08-08; просмотров: 1042;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.