Принятые в машиностроении знаки поперечных сил и
Изгибающих моментов
Поперечная сила в сечении считается положительной, если она стремится развернуть сечение по часовойстрелке (рис. 29.4а), если
против, — отрицательной(рис. 29.46).
Знаки изгибающих моментов
Если действующие на участке внешние силы стремятся изогнуть балку выпуклостью вниз, то изгибающий момент считается положительным (рис. 29.5а), если наоборот —
отрицательным (рис. 29.5 б).
Рис. 29.4
Выводы
При чистом изгибе в поперечном сечении балки возникает только изгибающий момент, постоянный по величине.
При поперечном изгибе в сечении возникает изгибающий момент и поперечная сила.
Изгибающий момент в произвольном сечении балки численно равен алгебраической сумме моментов всех внешних Рис. 29.5
сил, приложенных к отсеченной части, относительно рассматриваемого сечения.
Поперечная сила в произвольном сечении балки численно равна алгебраической сумме проекций всех внешних сил, действующих на отсеченной части на соответствующую ось.
Пример 2.На балку действует пара сил с моментом m и распределенная нагрузка интенсивностью q. Балка защемлена справа (рис. 29.6).
Рис. 29.6
Рассечем балку на участке 1 на расстоянии z1 от левого края. Рассмотрим равновесие отсеченной части. Из уравнения ΣMх1 = 0 получим:
т — Мx1 = 0; Mx1 = m = const.
Участок 1 — участок чистого изгиба.
Рассечем балку на участке 2 на расстоянии z2 > а от края, z2 — расстояние сечения от начала координат.
Из уравнения ΣFy = 0 найдем поперечную силу Q2 . Заменяем распределенную нагрузку на рассматриваемом участке равнодействующей силой q(z2 — а).
ΣFy = - q(z2 — а) + Q2 = 0; Q2 = q(z2 — а)
Из уравнения моментов определяем изгибающий момент в сечении:
На втором участке возникает поперечный изгиб.
Выводы
При действии распределенной нагрузки возникает поперечная сила, линейно зависящая от координаты сечения.
Изгибающий момент на участке с распределенной нагрузкой меняется в зависимости от координаты сечения по параболическому закону.
Дата добавления: 2015-08-08; просмотров: 798;