Равнодействующая сходящихся сил

Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (рис. 1.13).

 

рис.1.12

 

Используя свойства векторной суммы сил, можно получить равнодействующую любой сходящейся системы сил, складывая последовательно силы, входящие в систему. Образуется многоугольник сил (рис. 1.13). Вектор равнодействующей силы соединит начало первого вектора с концом последнего.

При графическом способе определения равнодействующей век­торы сил можно вычерчивать в любом порядке, результат (величина и направление равнодействующей) при этом не изменится.

 

 

рис. 1.13

 

Вектор равнодействующей направлен навстречу векторам сил-слагаемых. Такой способ получения равнодействующей называют геометрическим.

З а м е ч а н и е. При вычерчивании многоугольника обращать внимание на параллельность сторон многоугольника соответствую­щим векторам сил.


Порядок построения многоугольника сил

1. Вычертить векторы сил заданной системы в некотором масштабе один за другим так, чтобы конец предыдущего вектора со­впадал с началом последующего.

2. Вектор равнодействующей замыкает полученную ломаную линию; он соединяет начало первого вектора с концом последнего и направлен ему навстречу.

3. При изменении порядка вычерчивания векторов в многоугольнике меняется вид фигуры. На результат порядок вычерчивания не влияет.


Условие равновесия плоской системы сходящихся сил

При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого.

Если плоская система сходящихся сил находится в равновесии, многоугольник сил этой системы должен быть замкнут.

Если в системе три силы, образуется треугольник сил.

Сравните два треугольника сил (рис. 2.4) и сделайте вывод количестве сил, входящих в каждую систему.

Р е к о м е н д а ц и я. Обратить внимание на направление векторов.

 

 

рис.1.14

Решение задач на равновесие геометрическим способом:

Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим).

Порядок решения задач:

1. Определить возможное направление реакция связей.

2. Вычертить многоугольник сил системы, начиная с известных сил в некотором масштабе. (Многоугольник должен быть замкнут, все векторы – слагаемые направлены в одну сторону по обходу контура.)

3. Измерить полученные векторы сил и определить их величину, учитывая выбранный масштаб.

4. Для уточнения решения рекомендуется определить их величины векторов (сторон многоугольника) с помощью геометрических зависимостей.








Дата добавления: 2015-08-08; просмотров: 4072;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.