Методы предматематической подготовки

В процессе формирования элементарных математических пред­ставлений у дошкольников педагог использует разнообразны£_ме1_ „тоды1 обучения и умственного воспитания: jTpaKTH4ecKHe, наглядные, сЖовёСные, игровые. При выборе способов и приемов работы" учитывается ряд факторов: цель, задачи, содержание формируемых математических представлений на данном этапе, возрастные и ин­дивидуальные особенности детей, наличие необходимых дидактичес­ких средств, личное отношение воспитателя к тем или иным мето­дам, конкретные условия и т. д. Среди многообразных факторов, влияющих на выбор того или иного метода, определяющими являют­ся программные требования.

В предматематической подготовке дошкольников редко исполь­зуются методы в «чистом» виде. Обычно они применяются комплекс­но, в разнообразных комбинациях друг с другом, важно, чтобы они позволяли достигать наилучших результатов при обучении ма­леньких детей. В формировании элементарных математических пред­ставлений ведущим принято считать практический метод. Сущность его заключается в организации практической деятельности детей, направленной на усвоение определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.), на базе которых возникают элемен­тарные математические представления.

Практический метод в наибольшей мере соответствует как специфике и особенностям элементарных математических представ­лений, формируемых у дошкольников, так и возрастным возможнос­тям, уровню развития их мышления, в основном наглядно-дейст­венного и наглядно-образного. В мышлении маленького ребенка отражается прежде всего то, что вначале совершается в практи­ческих действиях с конкретными предметами, их изображениями или условными обозначениями.

Согласно теории П. Я. Гальперина происходит это следующим образом: практические и материализованные внешние действия де­тей, отражаясь в устной речи, переносятся во внутренний план,

1 Термин «метод» употребляется в двух смыслах — широком и узком. Метод может обозначать исторически сложившийся подход к предматематической подго­товке в детском саду (монографический метод, вычислительный метод), а также способы и приемы работы воспитателя с детьми.


в мысль. Развитие мысли проходит ряд этапов. На каждом из них е разной глубиной происходит отражение практически производи­мого материализованного действия.

Характерными особенностями практического метода при фор­мировании элементарных математических представлений являются:

· выполнение разнообразных практических (материальных и материализованных) действий, служащих основой для умственных действий;

· широкое использование дидактического материала;

· возникновение представлений как результата практических действий с дидактическим материалом;

· выработка навыков счета, измерения, вычисления и рассужде­ния в самой элементарной форме;

· широкое использование элементарных математических пред­ставлений в практической деятельности, быту, игре, труде, т. е. в других видах деятельности.

Практический метод предполагает организацию упражнений. В процессе упражнений ребенок неоднократно повторяет прак­тические и умственные действия. Упражнения могут предлагаться детям в форме заданий, организовываться как действия с демон­страционным материалом или протекать в виде самостоятельной работы с раздаточным дидактическим материалом. Используются как коллективные (выполняются всеми детьми одновременно), так и индивидуальные (осуществляются обычно у доски или у стола воспитателя) формы выполнения упражнений.

Коллективные упражнения, помимо усвоения и закрепления зна­ний, могут использоваться для контроля. Индивидуальные упражне­ния, выполняя те же функции, служат образцом, на который дети ориентируются в коллективной деятельности. Взаимосвязь между ними определяется не только общностью функций, но и постоянным чередованием, закономерной сменой друг друга. Упражнения должны дифференцироваться по степени сложности с учетом индивиду­альных особенностей детей.

Игровые элементы включаются в упражнения во всех возраст­ных группах: в младших — в виде сюрпризного момента, имитаци­онных движений, сказочного персонажа и т. д.; в старших — при­обретают характер поиска, угадывания, соревнования. В таких случаях говорят об игровых упражнениях или упражнениях в игровой форме.

С возрастом детей упражнения усложняются: они уже состоят из большого числа звеньев, учебно-познавательное содержание выступает в них прямо, не маскируясь практической или игровой задачей, во многих случаях для их выполнения требуется прояв­ление смекалки, сообразительности.

Наиболее эффективны комплексные по характеру упражнения, дающие возможность одновременно решать несколько программных задач из разных разделов, органически сочетающихся друг с дру­гом, например: «количество и счет» и «величина»; «количество и счет» и «геометрические фигуры»; «геометрические фигуры», «величина», «количество и счет» и т. д. Такие упражнения повышают коэффициент полезного действия занятия, увеличивают его плот­ность. Содержательность упражнений обеспечивает достаточно высокий уровень умственной нагрузки на дошкольников в процессе всего занятия.

В детском саду широко используются однотипные упражнения, благодаря которым у дошкольников вырабатываются необходимые способы действий. Дети овладевают необходимыми умениями считать, измерять, вычислять. У них формиру­ется круг элементарных математических представлений. При этом постоянно варьируются условия: меняются дидактический материал, форма организации детей, методические приемы и т. д. Благодаря элементу новизны такие упражне­ния не надоедают дошкольникам. Варьирование несущественных признаков при не­изменности существенного является условием успешного формирования элементар­ных математических представлений.

При подборе упражнений учитывается не только их «сочетае­мость» в одном занятии, но и дальнейшая перспектива. Система упражнений на одном занятии должна органично вписываться в общую систему разнообразных упражнений, проводимых в течение года.

Существующая в настоящее время > система упражнений для каждой возрастной группы строится на принципе взаимосвязи. Каждое предыдущее и последующее упражнение имеет общие эле­менты: материал, способы действия, результаты и т. д. Сближают­ся во времени или одновременно даются упражнения на усвоение взаимосвязанных и взаимообратных способов действия (наложе­ние — приложение и т. д.), отношений (больше — меньше, выше — ниже, шире — уже и т. д.), арифметических действий (сложе­ние — вычитание, плюс — минус и т. д.).

В упражнениях должны быть предусмотрены все возможные ва­рианты действий, например: сравнение (по количеству предметов) групп, состоящих из 1 и 1, 1 и 2, 2 и 1, 2 и 2, 2 и 3, 3 и 2 и т. д. предметов; измерение одинаковыми мерками разных объектов, одина­ковых объектов разными мерками, разных объектов разными мерками; измерение расстояний, объемов и масс жидкостей, сыпучих веществ и т. д. Сталкиваясь при выполнении упражнений с разными случаями проявления одних и тех же математических связей, зависимостей и отношений, ребенок легче и быстрее осознает их и в дальнейшем приходит к обобщению.

Упражнения могут быть репродуктивными, основанными на воспроизведении способа действия, в которых действия детей полностью регламентируются воспитателем в виде образца, пред­писания, требований, инструкции, правил (алгоритмов), определяю­щих, что и как надо делать. Строгое следование таким образцам дает определенный положительный результат, обеспечивает правиль­ное выполнение задания, предупреждает возможные ошибки. Ход и результат упражнения находятся под, непосредственным наблюде­нием и контролем воспитателя, который своими указаниями, поясне­ниями, непосредственной помощью корректирует действия детей.

Обучение счету, измерению, простейшим вычислениям и связанным с ними рассуждениям требует большого количества таких упражне­ний.

Продуктивные упражнения характеризуются тем что, действия дети должны полностью или частично открыть сами. Они развивают"самостоятельность мышления, требуют творческого под­хода, вырабатывают целенаправленность и -целеустремленность. Воспитатель обычно говорит, что надо делать, но не сообщает и не демонстрирует способа: действия. При выполнении упражнений ребенок прибегает к мыслительным и практическим пробам, выдви­гает предположения и проверяет их, мобилизует имеющиеся знания, учится использовать их в новой ситуации, проявляет сообразитель­ность, смекалку. При выполнении таких упражнений воспитатель оказывает помощь лишь в косвенной форме, предлагает детям поду­мать и еще раз попробовать, одобряет правильные действия, напоми­нает об аналогичных упражнениях, которые ребенок уже выполнял, и т. д.

Соотношение продуктивных и репродуктивных упражнений определяется воз­растом детей, имеющимся у них опытом решения практических и познаватель­ных задач, характером самих математических представлений и уровнем их разви­тия. С возрастом нарастает степень самостоятельности детей при выполнении упражнений. Возрастает роль словесных указаний, пояснений и разъяснений, организующих и направляющих самостоятельную деятельность детей. Ребята учатся,выполнив упражнение, рассказывать, что они делали и что получилось в результате, оценивают правильность своих действий и действий товарищей, осу­ществляя само- и взаимоконтроль.

При формировании элементарных математических представле­ний игра выступает как метод обучения и может быть отнесена к практическим методам.

' Широко используются разнообразные дидактические игры. Благодаря обучающей задаче, облеченной в игровую форму (иг­ровой замысел), игровым действиям и правилам ребенок непред­намеренно усваивает определенную «порцию» познавательного со­держания. Все виды дидактических игр (предметные, настольно-печатные, словесные и др.) являются эффективным средством и методом формирования элементарных математических представле­ний у детей во всех возрастных группах. Предметные и словесные игры проводятся на занятиях по математике и вне их, настольно-печатные, как правило, в свободное от занятий время*. Все они выполняют основные функции обучения — образовательную, воспи­тательную и развивающую. Существуют дидактические игры по * формированию количественных представлений, представлений о с величине, форме, фигурах, пространстве, времени1. Таким образом, весьма перспективным является представить каждый раздел про­граммы по «математике» в детском саду системой дидактичес­ких игр, служащих для упражнения детей в применении знаний.

 

' В «Типовой программе воспитания и обучения в детском саду» дан их перечень для каждой возрастной группы.


Сами знания в виде способов действий и соответствующих им представлений ребенок получает первоначально вне игры, в играх лишь создаются благоприятные усло&ия для их уточнения, закреп­ления, систематизации. Структура большинства дидактических Игр не позволяет сообщить детям новые знания, однако это не означа­ет, что в принципе такое невозможно.

В настоящее время разработана система так называемых обучающих игр'. В отличие от существующих они позволяют формировать у детей принципиально новые знания, которые нельзя полу­чить непосредственно из окружающей действительности, так как их содержанием являются абстрактные понятия математики. Основной их целью является подготовка мышления дошкольника к вос­приятию фундаментальных математических понятий: «множество и операции над множествами», «функция», «алгоритм» и т. д. В этих играх используется специфический дидактический материал, по­добранный по определенным признакам. Моделируя математические понятия, он позволяет выполнять логические операции: разбиение множества на классы, отыскание объектов по необходимым и достаточным критериям и т. д. Игры, содержание которых ориенти­ровано на формирование математических понятий, способствуют абстрагированию в мыслительной деятельности, учат оперировать обобщенными представлениями, формируют логические структуры мышления.

Дидактические игры выполняют обучающую функцию успешнее, если они применяются в системе, предполагающей вариативность, постепенное усложнение и по содержанию, и по структуре, связь с другими методами и формами работы по формированию элемен­тарных математических представлений.

При подборе дидактических игр для занятий, индивидуальной работы с детьми воспитатель обращается к разнообразным источ­никам, использует народные и авторские игры, с предметами и без них.

"^Особое значение имеют дидактические игры при формирова­нии представлений о пространственных отношениях, форме, величине. Большая часть программных задач из этих разделов решается с помощью дидактических игр.

Дидактические игры могут применяться в качестве одного из методов проведения занятий, индивидуальной работы, быть формой организации самостоятельной познавательной деятельности детей.

Игра как метод обучения и формирования элементарных мате­матических представлений предполагает использование отдельных элементов разных видов игр (сюжетно-ролевой, игры-драматизации, подвижной и т. д.), игровыхприемов (сюрпризный момент, сорев­нование, поиск и т. д.), органическое сочетание игрового и дидактического начала в виде руководящей, обучающей роли взрослого и возрастающей познавательной активности и самостоятельности ребенка.

Наглядные и словесные методы при формировании элементар­ных математических представлений не являются самостоятель­ными, они сопутствуют практическим и игровым методам. Это отнюдь не умаляет их значения в предматематической подготовке детей в детском саду.

При формировании элементарных математических представлений широко используются приемы, относящиеся к наглядным, словес­ным и практическим методам и применяемые в тесной взаимо­связи друг с другом:

1. Демонстрация воспитателем способа действия в сочетании с Объяснением". Это основной прием обучения, он носит на­глядно-действенный характер, выполняется с помощью разнообраз­ных дидактических средств, дает возможность формировать навы­ки неумения у детей. К нему, как правило, предъявляются сле­дующие требования:

— четкость, «пошаговая» расчлененность демонстрации;

— согласованность действий со словестными пояснениями;

точность, краткость и выразительность речи, сопровождаю­щей показ способов действия;

— активизация восприятия, мышления и речи детей.

Этот прием чаще всего используется при сообщении новых знаний.

2. Инструкция по выполнению самостоятельных заданий (уп­ражнений). Прием связан с показом воспитателем способов действия и вытекает из него. Инструкция сообщает, что, как и в какой последовательности надо делать, чтобы получился необходимый результат.

В старших группах инструкция носит целостный характер, дается полностью до выполнения задания, в младших — сочетается с ходом его выполнения, предваряя каждое новое действие.

Пояснения, разъяснения, указания. Эти словесные приемы используются воспитателем при демонстрации способов действия или в ходе выполнения детьми задания, чтобы предупредить
ошибки, преодолеть затруднения и т. д. Они должны быть краткими, конкретными, живыми и образными.

Вопросы к детям. Это один из основных приемов формиро­вания элементарных математических представлений у детей во всех возрастных группах. Они могут быть:

 

— репродуктивно-мнемические (Что это такое? Какого цвета флажки? Как называется эта фигура? И т. д.);

— репродуктивно-познавательные (Сколько будет на полке кубиков, если я поставлю еще один? Какое число больше (мень­ше): 9 или 7? И т. д.);

продуктивно-познавательные (Что надо сделать, чтобы кружков стало поровну? Как решить эту задачу? Как можно опре­делить, какой по счету красный флажок? И т. д.)1.

Вопросы активизируют восприятие, память, мышление, речь детей. При формировании элементарных математических представ­лений обычно используется серия вопросов, начиная от более прос­тых, направленных на описание конкретных признаков, свойств предметов, результатов практических действий, т. е."констатирую­щих факты, до более сложных, требующих установления связей, отношений, зависимостей, их обоснования и объяснения, использо­вания простейших доказательств. Чаще всего такие вопросы задают­ся после демонстрации образца воспитателем или выполнения задания ребенком.

Например, после того как дети разделили бумажный прямо­угольник на две равные части, их спрашивают: «Что ты сделал? Как называются эти части? Почему каждую из этих двух частей можно назвать половиной? Какой формы получились части? Как доказать, что получились квадраты? Что надо сделать, чтобы разде­лить прямоугольник на четыре равные части?»2.

Разные по характеру вопросы вызывают различный тип позна­вательной деятельности: от репродуктивной, воспроизводящей изу­ченный материал, до продуктивной, направленной на решение проб­лемных задач.

Выделим некоторые основные требования к вопросам воспита­теля как методическому приему:

— точность, конкретность и лаконизм;

— логическая последовательность;

— разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному;

— оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей, изучаемого материала;

вопросы должны будить мысль ребенка, развивать его мыш­ление, заставлять задумываться, анализировать, сравнивать, со­поставлять, обобщать;

— количество вопросов должно быть небольшим, но достаточ­ным, чтобы достичь поставленную дидактическую цель;

— следует избегать подсказывающих и альтернативных вопро­сов, умело пользоваться дополнительными вопросами.

Вопросы следует рассматривать как эффективное средство активизации познавательной деятельности детей при формировании у них элементарных математических представлений. Они предлага­ются обычно всей группе, а ответ дает один ребенок. В отдельных случаях возможны и групповые ответы, что характерно для млад­ших дошкольников. Детям необходимо давать возможность обдумы­вать ответ, поэтому, после того как вопрос задан, следует де­лать небольшие паузы.

Старших дошкольников необходимо учить формулировать вопро­сы самостоятельно. В конкретной ситуации, используя дидакти­ческий материал, воспитатель предлагает детям ставить вопросы о количестве предметов, порядковом месте предмета среди других, о размере, форме, .способе измерения и т. д. Педагог учит пра­вильно формулировать вопросы по результатам непосредственного сравнения отдельных предметов, групп предметов и т. д., при этом дети успешнее овладевают умением задавать вопросы в тех случаях, когда они адресуются конкретному лицу — воспитателю, товарищу, родителям.

Отметим также методические требования к ответам детей. От­веты должны быть:

— краткими или полными в зависимости от характера вопроса;

— самостоятельными и осознанными;

— точными, ясными, достаточно громкими;

— грамматически правильными.

В работе с дошкольниками воспитателю часто приходится при­бегать к приему переформулировки ответов, придавая им правиль­ную форму («На полке грибов четыре»,— говорит малыш. «На полке четыре гриба»,— уточняет воспитатель). Переформулировка ответа в данном случае — это его исправление, сочетающееся с предложением повторить правильный ответ.

5. Словесные отчеты детей. Этот методический прием складывается из вопроса воспитателя, требующего после выполнения I упражнения детьми рассказать, что и как они делали и что получилось в итоге, и собственно детских ответов на вопрос. Слово помогает вычленить действие, осмыслить результат. На первых порах педагог помогает детям, дает образец отчета", постепенно I они самостоятельно рассказывают о своих действиях, оперируя математическими представлениями.

6. Контроль и оценка. Эти приемы выступают в тесной взаимосвязи друг с другом.

Контроль осуществляется при наблюдении за процессом выпол­нения детьми заданий, результатами их действий, ответами. Он сочетается с указаниями, пояснениями, разъяснениями, демонст­рацией способов действий взрослым в качестве образца, непосред­ственной помощью, включает исправление ошибок.

Исправление ошибок педагог осуществляет в ходе индивиду­альной и коллективной работы с детьми. Исправлению подлежат практически-действенные и словесно-речевые ошибки. Воспитатель должен разъяснять причины ошибок, обращать внимание на образец своей речи или в качестве примера использовать лучшие действия и ответы других ребят. Постепенно педагог начинает сочетать контроль с само- и взаимоконтролем. Зная типичные ошибки, ко­торые допускают дети при счете, измерении, простейших вычисле­ниях и т. д., воспитатель предупреждает их появление.

Оценке подлежат способы и результаты действий, поведение ребят. Оценка взрослого, приучающего ориентироваться по образ цу, сочетается с оценкой товарищей и самооценкой. Этот прием используется по ходу и в конце выполняемых упражнений, прово­димых игр, занятий.

Использование контроля и оценки имеет свою специфику в зависимости от возраста детей и степени овладения ими знаниями и способами действий. Контроль с процесса действий постепенно переносится на результат, оценка становится более дифференциро­ванной и содержательной. Эти приемы, кроме обучающей, выпол­няют и воспитательную функцию: воспитывают доброжелательное отношение к товарищу, желание и умение ему помочь, активность и т. д.

7. В ходе формирования элементарных математических пред­ставлений такие их компоненты, как сравнение,_анализ, синтез, обобщение, выступают не только как показательные'.процессы, или операции, но и как методические приемы, определяющие тот путь, по которому движется мысль ребенка при обучении, позна­нии нового.

В основе сравнения лежит установление сходства и различий между объектами. Дети сравнивают предметы по количеству, форме, величине, пространственному расположению, интервалы вре­мени — по длительности и т. д. Вначале их учат сравнивать мини­мальное количество предметов, затем число таких предметов посте­пенно увеличивают одновременно с уменьшением степени контраст­ности сравниваемых признаков. Методический прием сравнения, к которому педагог часто прибегает в процессе формирования элемен­тарных математических представлений у детей, связан с анализом и синтезом.

Анализ — это движение мысли от целого к его частям, син­тез — от частей к целому. Эти компоненты являются составной частью развития у детей задатков дедуктивного и индуктивного способов мышления. Они выступают в единстве. Примером исполь­зования анализа и синтеза как методических приемов может слу­жить формирование у детей представлений о понятиях «много» и «один», которые возникают под влиянием наблюдения и практичес­ких действий с предметами.

Так, например, распределив среди малышей столько одинако­вых игрушек, сколько детей, а затем собрав игрушки вместе, пе­дагог показывает ребятам, что группа предметов» т. е. «много», состоит из отдельных предметов, из отдельных предметов вос­создается вся группа.

На основе анализа и синтеза детей подводят к обобщениям, в которых обычно суммируются результаты наблюдений и действий. Этот прием направлен на осознание количественных, простран­ственных и временных отношений, выделение главного и существен­ного. Обобщение проводится обычно в конце каждой части заня­тия, а также и в конце всего занятия с ведущей ролью воспитателя.

Сравнение, анализ, синтез, обобщение осуществляются на наглядной основе с привлечением разнообразных дидактических средств. Наблюдение, практические действия с предметами, отраже­ние их результатов в речи, вопросы к детям являются внешним выражением этих методических приемов,, которые тесно между собой связаны и используются комплексно.

8. В методике обучения приемами называют также некоторые специальные практические или умственные действия, на основе которых у детей формируются элементарные математические представления. К таким приемам традиционно относят: наложение и приложение предметов; обследование формы предмета; «взвешивание»—предмета «на руках»; использование фишек-эквивалентов; присчитывание и отсчитывание по единице и т. д.

По сравнению с другими данные приемы имеют узкоспециальное назначение, применяются для решения строго определенных дидактических задач. Реализация каждого программного требования осуществляется с помощью таких приемов, количество которых долж­ен'но быть достаточно для достижения дидактической цели, а область применения ограничена.

9. Моделирование — наглядно-практический прием, включающий создание моделей и их использование для формирования элемен­тарных математических представлений.

Модели следует рассматривать и как эффективное дидактическое средство. «....При овладении способами использования моделей перед детьми раскрывается область особых отношений — отношений моделей и оригинала, и соответственно формируются два тесно связанных между собой плана отражения — план реальных объектов и план моделей, воспроизводящих эти объекты» .

Эти планы отражения имеют принципиально важное значение для развития наглядно-образного и понятийного мышления. Модели могут выполнять разную роль: одни, -воспроизводя внешние связи, помогают ребенку увидеть те из них, которые он самостоя­тельно не замечает, другие воспроизводят искомые, но скрытые связи, непосредственно не воспринимаемые свойства вещей. Широ­ко используются модели при формировании временных представле­ний (например, модель частей суток, недели, года, календарь); количественных представлений (например, числовая лесенка, число­вая фигура и т. д.); пространственных представлений (например, модели геометрических фигур и т. д.). При формировании элементар­ных математических представлений применяются в основном пред­метные, предметно-схематические, графические модели.

В настоящее время положено лишь начало теоретической и конкретно-методической разработке этого приема, являющегося чрезвычайно перспективным в силу следующих факторов:

а) математические понятия рассматриваются как своеобраз­ные модели реальной действительности;

б) в процессе формирования элементарных математических представлений у детей от педагога постоянно требуется созда­ние материальных конструкций, представляющих в конкретно-чувственной форме математические понятия;

в) дошкольник располагает некоторыми психологическими предпосылками для введения отдельных моделей и элементов моделирования: развитие наглядно-действенного и наглядно-образ­ного мышления, способность к замещению;

г) использование моделей и моделирования ставит ребенка в активную позицию, стимулирует познавательную деятельность.

Использование моделей и моделирования естественно должно сочетаться с другими приемами обучения, при этом воспитатель, владея разнообразными методами и приемами, имеет в виду главную задачу их использования и творческого применения — осуществле­ние предматематической подготовки дошкольников.








Дата добавления: 2015-07-10; просмотров: 1784;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.032 сек.