Решение. Для решения задачи используем принцип независимости действия сил, а именно: отдельно построим эпюры продольных сил от действия сосредоточенной силы и от
Для решения задачи используем принцип независимости действия сил, а именно: отдельно построим эпюры продольных сил от действия сосредоточенной силы и от действия собственного веса, то есть от равномерно распределенной продольной нагрузки . Расчетная схема и эпюры продольных сил и изображены на рис. 2.23.
Полное удлинение стержня будет складываться из удлинения, полученного стержнем от действия сосредоточенной силы и от действия собственного веса:
.
Или в другом виде:
.
Для того, чтобы определить перемещение сечения m-n отбрасываем часть стержня ниже сечения m-n, а ее действие заменяем сосредоточенной силой , равной продольной силе в сечении m-n:
.
В результате получаем новую расчетную схему, которая приведена на рис. 2.24.
Рис.2.24.
А теперь решаем новую задачу о нахождении полного удлинения уже для данного стержня (рис. 2.23):
,
.
Расчет статически определимых стержневых систем
Статически определимая стержневая система – это система, в которой все неизвестные реакции опор и внутренние усилия можно определить из уравнений равновесия (статики).
Для «решения» любой стержневой системы необходимо выделить в ней объект равновесия. В связи с этим, все системы можно разделить на два типа:
1 тип – системы, состоящие из абсолютно жестких (недеформируемых) стержней и одиночных невесомых (деформируемых) стержней. Для стержневых систем этого типа объектами равновесия являются недеформируемые стержни.
2 тип – системы, состоящие из нескольких деформируемых стержней, соединенных в одной точке. Точки соединения двух и более стержней называются узлами, которые и являются объектами равновесия для систем 2-го типа.
Все соединения в элементах систем шарнирные, однако существуют определенные правила, по которым вводятся реакции и усилия в стержнях:
- в шарнире, соединяющем абсолютно жесткий элемент системы с «землей» или с другой конструкцией, всегда возникают две реакции – горизонтальная и вертикальная ;
- в шарнире, соединяющем деформируемый стержень с абсолютно жестким стержнем или с другой конструкцией, всегда возникает одна реакция, направленная вдоль этого стержня и равная по величине усилию, возникающему в нем.
В абсолютно жестких стержнях никогда не возникает внутренних усилий, они не деформируются!
- в шарнире, соединяющем несколько деформируемых стержней (узловой шарнире), возникают усилия, направленные вдоль этих стержней и сходящиеся в этом узле.
Порядок решения большинства задач о проверке прочности статически определимых стержневых систем при расчете по допускаемым напряжениям сводится к следующим этапам:
1) находим внутренние усилия (продольную силу при растяжении-сжатии) и выявляем опасные сечения;
2) определяем напряжения;
3) после выявления максимальных напряжений используем условие прочности (формулы (2.26), (2.28), (2.32)) при растяжении-сжатии).
Дата добавления: 2015-08-08; просмотров: 629;