Логические основы ЭВМ
Принципы работы ЭВМ основываются на законах математической логики, поэтому ее элементы широко используются для поиска и обработки информации и при разработке схем электронных устройств.
Математическая логика – это наука о формах и способах мышления и их математическом представлении.
Мышление основывается на понятиях, высказываниях и умозаключениях.
Понятие объединяет совокупность объектов, обладающими некоторыми существенными признаками, которые отличают их от других объектов. Например, понятие «звезда» объединяет множество светящихся газовых шаров. Это понятие трудно спутать с таким понятием как, например, «автомобиль». Объекты, соответствующие одному понятию, образуют множество.
Понятие имеет две характеристики:
1) содержание;
2) объем.
Содержание понятия – это совокупность существенных признаков, выделяющих объекты, соответствующие данному понятию, среди других объектов. Например, содержание понятия «человек» можно раскрыть так: «Общественное существо, обладающее сознанием и разумом».
Объем понятия «человек» определяется численностью людей, живущих в мире.
Высказывание (суждение, утверждение) – это повествовательное предложение, в котором утверждаются или отрицаются свойства реальных предметов и отношения между ними. Поэтому высказывание может быть истинным или ложным.
Истинным называется высказывание, в котором связь понятий правильно отражает свойства и отношения реальных вещей, например: «Москва – столица России». Истинность высказывания кодируется единицей (1) и имеет значение «истина».
Ложным высказывание будет в том случае, когда оно не соответствует реальной действительности, например: «Париж – столица США». Ложность высказывания кодируется нулем (0) и имеет значение «ложь».
Обычно высказывания обозначаются логическими переменными – заглавными латинскими буквами с индесом или без, например, A = «Сегодня идет дождь». Логические переменные принимают только два значения 0 и 1.
Умозаключение позволяет из известных фактов (истинных высказываний) получать новые факты. Например, из факта «Все углы треугольника равны» следует истинность высказывания «Этот треугольник равносторонний».
Высказывания и логические операции над ними образуют алгебру высказываний (булеву алгебру), предложенную английским математиком Джорджем Булем.
Дата добавления: 2015-08-08; просмотров: 615;