Перевод дробных чисел
Если при переводе конечной дроби в другую систему счисления получается конечная дробь, то такой перевод называется точным. Если при переводе получается бесконечная дробь, тогда перевод называется приближенным.
Перевод дробных чисел из n-й в десятичную систему счисления - вещественное число переводится из n-й в десятичную систему счисления с использованием формализованного представления числа.
Перевод дробных чисел с нулевой целой частью из десятичной в n-ую систему счисления - дробное число X, у которого целая часть равна 0, переводится из десятичной в n-ую систему счисления по следующему алгоритму:
1) умножить X на n;
2) получить цифру как целую часть числа X и приписать ее справа от имеющихся цифр;
3) обнулить целую часть числа X;
4) выполнять шаги 1-3, пока X ¹ 0 (при точном переводе) или до получения нужного количества цифр в дробной части (при приближенном переводе с заданной точностью).
Пример. Перевести число 0,6875 в двоичную систему счисления.
Решение. Вновь схему перевода запишем в виде столбца.
На последнем шаге перевода получена единица. После обнуления целой части получим 0. Значит, перевод закончен. Результат перевода числа 0,6875 в двоичную систему счисления – число 0,10112.
Если бы нам было необходимо получить дробную часть с точностью до 3 знаков, то процесс перевода был бы остановлен после получения 3 цифр в дробной части. □
Перевод дробных чисел с ненулевой целой частью из десятичной в n-ую систему счисления - при переводе дробных чисел из десятичной в n-ую систему счисления отдельно переводятся целая и дробная части.
Десятичная система счисления может использоваться в качестве промежуточного этапа при переводе чисел из одной системы счисления в другую. Приведенные в этой главе правила позволяют перевести числа из одной системы счисления в десятичную, а из нее – в любую другую системы счисления.
Дата добавления: 2015-08-08; просмотров: 561;