Это выражение является законом сохранения импульса. Суммарный импульс замкнутой системы точек (тел) не меняется с течением времени.
Закон сохранения импульса находит широкое применение в природе и технике. Примером может служить явление отдачи ружья при выстреле пули. Выстрел производится в горизонтальном направлении (рис.2.4).
Систему ружье-пуля можно считать изолированной системой и к ней применим закон сохранения импульса: , m и v – масса и скорость пули, M и v0 – масса и скорость ружья. В начальный момент времени (до выстрела) система покоилась (v=v0=0), следовательно константа в уравнении равна нулю. Отсюда, соотношение скоростей v и v0 после выстрела, можно рассчитать из равенства , .
Т.к. m<<M, то v>>v0; знак «минус» указывает на противоположную направленность скоростей. Эксперименты доказывают, что закон сохранения импульса выполняется и для замкнутых систем микрочастиц, т.е. в квантовой механике. Таким образом, закон сохранения импульса универсален и является фундаментальным законом природы.
2. 4. Центр масс. Закон движения центра масс. @
Центр масс (или центр инерции) системы материальных точек (тел) есть некоторая точка в пространстве С, положение которой характеризует распределение масс системы. Ее радиус-вектор равен : , где n – число точек (тел) системы, m1, m2…mn – их массы; - их радиусы-векторы; m – общая масса системы.Скорость центра масс
. Так как , - импульс всей системы, то или импульс системы равен произведению массы системы на скорость ее центра масс.
По II закону Ньютона . Отсюда , т.е. центр масс системы движется как материальная точка, в которой сосредоточена масса всей системы и на нее действует сила, равная геометрической сумме всех внешних сил, действующих на тела системы. Это есть закон движения центра масс. Если система замкнута, то , и .
Следовательно центр масс замкнутой системы движется прямолинейно и равномерно, либо остается неподвижным. Например, молоток вращается, а его центр масс движется прямолинейно и равномерно (рис.2.5).
Рис.2.5. Свободно летящий молоток. Его центр инерции помечен крестиком.
2. 5. Принцип реактивного движения. Уравнение движения тела с переменной массой. @
Особый интерес представляет применение закона сохранения импульса к явлению «непрерывной отдачи», происходящему в реактивном двигателе (ракете). Если рассматривать ракету и выбрасываемые ею продукты сгорания как единую механическую систему, то для получения уравнения ее движения можно применить закон сохранения импульса. Эта идея была высказана в 1881 г. Н.И.Кибальчичем и развита в трудах К.Э.Циолковского. Уравнение движения тела с переменной массой было выведено в 1897г. И.В.Мещерским.
При выводе уравнения необходимо учитывать, что в процессе движения ракеты изменяется ее масса, т.к. удаляются продукты сгорания. Пусть в момент времени t масса ракеты – m и ее скорость - . Через интервал времени dt масса ее уменьшится на dm и станет равной m-dm, а скорость будет равна . Образовавшиеся продукты сгорания топлива за время dt приобрели импульс , где - скорость истечения газа относительно ракеты. Изменение импульса всей системы (ракета + продукты сгорания) за время dt равно
Так как - пренебрежимо малая величина, поэтому после сокращений получим . Полагая, что на ракету в далеком космосе не действуют внешние силы, то из закона сохранения импульса следует, что .
Разделим обе части равенства на dt и после простых преобразований получим .
Выражение в правой части равенства имеет размерность силы и называется реактивной силой . Таким образом уравнение динамики движения ракеты в космосе можно записать в виде: . Интегрируя обе части этого равенства, получим . Постоянную интегрирования С находим из начальных условий : в момент времени t=0 скорость ракеты v=0 и масса m=m0, тогда и .
Эта формула называется формулой Циолковского. Скорость ракеты v будет тем больше, чем больше масса ракеты и скорость истечения продуктов сгорания топлива.
Если на систему действуют внешние силы , то и аналогичным образом плучается уравнение И.В.Мещерского в виде :
2.6. Энергия, работа, мощность. @
Одного понятия импульса оказалось недостаточно для характеристики движения. Например, два снаряда с массами m1=1кг, m2=10кг и скоростями v1=10м/c, v2=1м/c имеют одинаковые импульс р=10кг×м/с, но их разрушающее действие для преграды будет совершенно разное (у первого в 10 раз больше).
Единой мерой различных форм движения и взаимодействия всех видов материи является энергия. Различным видам движения и взаимодействия материи, соответствуют различные виды энергии: механическая, тепловая, химическая, электро-магнитная, атомная.
Простейшей форме движения – механической, соответствует механическая энергия. Она характеризует способность тела или системы тел совершать работу и измеряется количеством работы, которую при определенных (заданных) условиях может совершить система. Например, катящийся шар, сталкиваясь с некоторым телом, перемещает его, т.е. совершает работу. Растянутая пружина, сокращаясь после устранения деформирующей силы, совершает работу по перемещению своих частей (витков). Следовательно, катящийся шар и растянутая пружина обладают механической энергией.Процесс изменения механической энергии тела под действием силы называется процессом совершения работы. Приращение энергии тела в этом процессе называется работой силы, отсюда следует общее соотношение, связывающее работу и изменение энергии
А=Е2-Е1,
Дата добавления: 2015-08-01; просмотров: 1033;