Формула Ньютона – Лейбница

Теорема.Пусть функция непрерывна на отрезке и - любая первообразная для на . Тогда определенный интеграл от функции на равен приращению первообразной на этом отрезке, т.е.

Нахождение определенных интегралов с помощью формулы Ньютона – Лейбница осуществляется в два этапа: 1) используя методы вычисления неопределенного интеграла, находят некоторую первообразную F(x) для подынтегральной функции f(x); 2) применяя собственно формулу Ньютона – Лейбница, находят приращение первообразной, равное искомому интегралу.

Пример 5.1.Вычислить








Дата добавления: 2015-07-30; просмотров: 1008; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2023 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.