Определнный интеграл, его геометрический смысл, свойства.

Определённый интеграл — аддитивный монотонный нормированный функционал(???!!!), заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).

 

Пусть f(x) определена на [a;b]. Разобьём [a;b]на части с несколькими произвольными точками a = x0 < x1 < x2 < xn = b Тогда говорят, что произведено разбиение RR отрезка [a;b] Далее выберем произв. точку , i = 0, Определённым интегралом от функции f(x) на отрезке [a;b]называется предел интегральных сумм ΘR при , если он существует независимо от разбиения R и выбора точек ξi, т.е. (1) Если существует (1), то функция f(x) называется интегрируемой на [a;b] – определение интеграла по Риману.

a – нижний предел. b – верхний предел. f(x) – подынтегральная функция. λR - длина частичного отрезка. σR – интегральная сумма от функции f(x) на [a;b] соответствующей разбиению R. λR - максимальная длина част. отрезка.

 








Дата добавления: 2015-07-24; просмотров: 577;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.