Модель рабочего множества (Working Set)
В варианте чистого пейджинга процессы стартуют без необходимых страниц в памяти. Первая же машинная инструкции генерирует page fault. Другой page fault происходит при локализации глобальных переменных и тут же при выделении памяти для стека. После того как процесс собрал большинство страниц, page fault'ы далее редки. Эта все происходит в соответствии с выборкой по запросу (требованию) в отличие от выборки с упреждением. Конечно, легко написать тестовую программу, которая систематически работает с большим адресным пространством. К счастью, большинство процессов не ведут себя подобным образом, а проявляют свойство локальности. В течение любой фазы вычислений процесс работает с небольшим количеством страниц. Этот набор называется рабочим множеством. (Denning 1968,1980).
В некотором смысле предложенный Деннингом подход является практически реализуемой аппроксимацией оптимального алгоритма (см. также [28]. Принцип локальности ссылок (недоказуемый, но подтверждаемый на практике) состоит в том, что если в период времени (T-t, T) программа обращалась к страницам (P1, P2, ..., Pn), то при надлежащем выборе t с большой вероятностью эта программа будет обращаться к тем же страницам в период времени (T, T+t). Другими словами, принцип локальности утверждает, что если не слишком далеко заглядывать в будущее, то можно хорошо его прогнозировать исходя из прошлого. Набор страниц (P1, P2, ..., Pn) и есть рабочее множество программы (или, правильнее, соответствующего процесса) в момент времени T. Понятно, что с течением времени рабочий набор процесса может изменяться (как по составу страниц, так и по их числу).
Наиболее важное свойство рабочего множества - его размер. ОС выделяет каждому процессу достаточное число кадров, чтобы поместилось рабочее множество. Если еще остались кадры, то может быть инициирован другой процесс. Если рабочие множества процессов не помещаются в память, и начинается трешинг, то один из процессов надо попридержать.
Решение о размещении процессов в памяти должно, следовательно, базироваться на размере его рабочего множества. Для впервые инициируемых процессов это решение может быть принято эвристически. Во время работы размер рабочего множества процесса динамически меняется. Система должна уметь определять: расширяет процесс свое рабочее множество или перемещается на новое рабочее множество. Если память мала, чтобы содержать рабочее множество процесса, то page fault'ов много.
В системах с разделением времени процессы часто перемещаются на диск. Что делать, когда процесс возвращается в память. Опять ждать пока он соберет свое рабочее множество? Поэтому многие системы хранят информацию о рабочих множествах процессов и загружают их, даже если процесс еще не стартовал (стратегия выборки с упреждением).
Размер рабочего множества может быть фиксированным, а может динамически настраиваться. Рассмотрим один из алгоритмов динамической настройки рабочего множества. При создании каждому процессу назначается минимальный размер рабочего множества, определяющий число страниц процесса, гарантированно находящихся в физической памяти при его выполнении. Если процессу требуется физических страниц больше, чем минимальный размер рабочего множества, и в наличии имеется свободная физическая память, то система будет увеличивать размер рабочего множества, но, не превышая максимального размера. Если же процессу требуется еще больше страниц, то дополнительные страницы будут выделяться за счет свопинга, без увеличения рабочего множества. Поскольку замещаемые страницы рабочего множества в действительности еще некоторое время могут оставаться в физической памяти, то они при необходимости могут быть возвращены в рабочее множество достаточно быстро, не требуя дисковых операций.
Когда свободной физической памяти становится слишком мало, система будет стремиться увеличить ее количество, урезая рабочие множества, размеры которых превышают минимальные.
В установившемся состоянии система следит за количеством исключительных ситуаций не присутствия страницы, вызываемых процессом. Если процесс генерирует page fault, и память не слишком заполнена, то система увеличит размер его рабочего множества. Если же процесс не вызывает исключительных ситуаций в течение некоторого времени, то система будет урезать его рабочее множество. При использовании таких алгоритмов система будет пытаться обеспечить наилучшую производительность для каждого процесса, не требуя никакой дополнительной настройки системы пользователем.
Итак, идея алгоритма подкачки Деннинга (иногда называемого алгоритмом рабочих наборов) состоит в том, что операционная система в каждый момент времени должна обеспечивать наличие в основной памяти текущих рабочих наборов всех процессов, которым разрешена конкуренция за доступ к процессору. Полная реализация алгоритма Деннинга практически гарантирует отсутствие thrashing. Алгоритм реализуем (известна, по меньшей мере, одна его полная реализация, которая, однако, потребовала специальной аппаратной поддержки). На практике применяются облегченные варианты алгоритмов подкачки, основанных на идее рабочего набора.
Дата добавления: 2015-07-24; просмотров: 1044;