Понятие графа

Направленным графом называется тройка G = (V, E, Ф), где V - множество вершин, Е – множество дуг, а Ф – функция из Е в (V {w})2, w V. Дуга е называется входом графа, если Ф(е) = (w, u), для u V {w}; внутренней, если Ф(е) = (u1, u2) для u1,u2 V; выходом, если Ф(е) = (u,w), для u V {w}. Дуга е, являющаяся одновременно и входом и выходом графа, называется висячей; для нее Ф(е) = (w,w). Дуги, не являющиеся внутренними, называются также свободными.

Говорят, что дуга е инцидентна вершине u, если е выходит из u или ведет в u. Две дуги смежны, если существует хотя бы одна инцидентная им обеим вершина. Вершина u называется наследником вершины u', если в графе имеется хотя бы одна такая дуга, что Ф(е) = (u', u).

Изображенный на рисунке 1.1. граф G1 содержит 4 вершины, 8 дуг. Дуга е1 – входная, дуга е6 – выходная, дуга е8 – висячая, остальные дуги внутренние; вершины u1 и u3 наследники вершины u1.

Путем в графе G называется последовательность …uieiui+1… дуг и вершин, такая, что для всех i Ф(еi) = (ui,ui+1). Образом пути называется слово, составленное из пометок проходимых дуг и вершин.

Две вершины u1,u2 графа G называются связанными, если u1 = u2 или существует маршрут е1, …, еn графа G такой, что дуга е1 инцидентна вершине u1, а дуга еn – вершине u2.

 








Дата добавления: 2015-07-18; просмотров: 685;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.